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Abstract: Spatial data analytics can detect patterns of clustering of events in small geographies
across an urban region. This study presents and demonstrates a robust research design to study the
longitudinal stability of spatial clustering with small case numbers per census tract and assess the
clustering changes over time across the urban environment to better inform public health policy
making at the community level. We argue this analysis enables the greater efficiency of public
health departments, while leveraging existing data and preserving citizen personal privacy. Analysis
at the census tract level is conducted in Mecklenburg County, North Carolina, on hypertension
during pregnancy compiled from 2011–2014 birth certificates. Data were derived from per year
and per multi-year moving counts by aggregating spatially to census tracts and then assessed for
clustering using global Moran’s I. With evidence of clustering, local indicators of spatial association
are calculated to pinpoint hot spots, while time series data identified hot spot changes. Knowledge
regarding the geographical distribution of diseases is essential in public health to define strategies that
improve the health of populations and quality of life. Our findings support that spatial aggregation
at the census tract level contributes to identifying the location of at-risk “hot spot” communities to
refine health programs, while temporal windowing reduces random noise effects on spatial clustering
patterns. With tight state budgets limiting health departments’ funds, using geographic analytics
provides for a targeted and efficient approach to health resource planning.

Keywords: geographic analysis; hot spot analysis; confidential data; LISA; Moran’s I; Community
Health Outcomes; health disparities

1. Introduction

In 2014, the U.S. Public Health Leadership Forum proposed that local and state health departments
act as the Community Chief Health Strategist [1]. One of the practice recommendations in the report
specifically calls for analysis and translation of large, real-time data sets to identify trends and hot
spots. A key step toward achieving this recommendation involves leveraging in new ways data
already routinely available to health departments as secondary data sources, namely birth and death
certificate data. The overarching objective of this undertaking is to identify trends in health outcomes
in a population, and the associated socio-economic determinants that may be conducive to developing
adequate and efficient interventions to enhance public health. This is deemed of particular relevance
for the resilience of urban regions, where inter-generational and cross-cultural population dynamics
challenges standards and practices in healthy cities.

Increasing the availability of standardized sub-county data is important for enhancing the
capability of improving our understanding of public health in urban areas. Geographic variation in
health factors and outcomes at the small-area level, including zip codes and census tracts, has been
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noted in many contexts [2]. Moreover, the use of small area analysis has become an important tool
in the effective targeting of limited public health resources [3]. Despite the ability of spatial data
analytics to detect patterns of clustering of events in small geographies across an urban region, small
geographies may display data on health conditions that are very sparse, which can lead to cross-sectional
analysis being biased by small-n designs. The challenge this creates for public health researchers and
practitioners is to discern longitudinal trends from noise associated with low frequencies. Thus, given
the criticality of small-area public health analysis and the constraints on access to relevant public health
data, the purpose of our analysis is to present and demonstrate a robust research design to (a) study
the longitudinal stability of spatial clustering with small case numbers per census tract and (b) assess
the clustering changes over time across the urban environment to better inform public health policy
making at the community level.

To this end, we use a case study of Mecklenburg County, North Carolina, to demonstrate that
temporal windowing may effectively smooth out noise, enhance the cross-sectional validity of results,
and allow us to trace longitudinal trends in spatial clusters of hypertension during pregnancy compiled
from 2011–2014 birth certificates. If applied in an ongoing fashion, this approach would facilitate
an important tool in targeting limited public health resources. We argue this analysis enables the
greater efficiency of public health departments, while leveraging existing data and preserving citizen
personal privacy.

2. Background

Local health departments increasingly are adopting geographic information system (GIS) software
for epidemiological analyses [4,5] and to build analytic capacity [6]. Historically, the geographic unit
of analysis most often used has been the county [7–9] or zip code [10], often due to availability of
geography-related data. Using the county as the aggregation unit, however, precludes identifying
specific high and low risk locales within the county, which may covary with the socioeconomics of local
population, environmental exposure, or geographic access to health care services. Although analysis
within county units, such as zip codes, has been used with publicly available data, analysis at smaller
geographic units, such as city blocks or census tracts, has been used less frequently due to concerns
about individual privacy and confidentiality [11]. Using the smallest feasible unit of analysis could
uncover more distinct or isolated high and low risk locations in need of public health attention. As local
health departments seek to act as Community Chief Health Strategists, public health administrators
will want geospatially informed analysis.

Geospatial analysis begins by assigning a location to each case [12], while balancing considerations
of accuracy and anonymity. Street addresses act as the finest level of analysis, yielding the most
detailed results. Aggregating cases into larger spatial units, such as zip codes or counties, hides
valuable details and reduces variance in the data [13]. In other words, the spatial unit acts as a proxy
for individual cases, resulting in a positional discrepancy between points on a map and true home
locations [14]. The degree of location accuracy becomes important when planning local interventions
or when proximity of cases to a source of exposure needs to be determined [15]. Using the most
accurate location provides health program planners with evidence to more reliably identify where
increases in resources or interventions are needed [16].

Accuracy in location, however, can lead to cases being identifiable, particularly in small spatial
units [17]. The identifiability of cases has been noted as a potential or actual issue of concern
in reproductive health [18], birth defects [19], diet [20], environmental health [21], social care
planning [22], and geo-privacy studies [23]. The U.S. Privacy Rule of the Health Insurance Portability
and Accountability Act (HIPAA) [24] requires that disclosed health information be restricted to the
minimum necessary to satisfy its intended purpose. Data are considered de-identified in accordance
with the HIPAA Privacy Rule if the data do not “identify an individual and if the covered entity has no
reasonable basis to believe it can be used to identify an individual” [25]. De-identification of geographic
information is accomplished by aggregating geographic identifiers to large-population area-based units
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or applying statistical principles to render information not individually identifiable [26]. However,
there is no universal standard for “adequate confidentiality protection” or “acceptable risk” [27].

Thus, selecting an approach to reduce the probability of identifying individuals, while preserving
the characteristics of the geographic data for valid inference, depends in part on the nature of the data,
acceptable confidentiality risk, and current and future use of the data [28].

Public health administrators and researchers should be aware of the analytic approach used to
identify high and low risk areas. Research using census tracts identifies fairly specific spatial clusters
of high rates (hot spots) of adverse health conditions, and conversely, spatial clusters of low rates
(cold spots) of that condition [29]. Knowing whether a hot spot is statistically significant (that is,
it would not have occurred by chance) can be determined through various approaches of spatial
statistics [30]. The health geography literature has evolved towards fully recognizing the scientific
merit of exploratory analysis [31], and cluster detection in particular. Open source geospatial software
(e.g., GeoDa, PYSAL, R code libraries) make geographic statistical methods more accessible to target
locations for interventions [32].

The United States Patient Portability and Affordable Care Act requirement that health care
organizations conduct community needs assessments [33] has led to new collaborations between
health departments and health care organizations, including data sharing. To leverage the value of
contemporaneous data from the electronic health records requires not only sharing data elements
across health organizations, but overcoming historical and logistical challenges of sharing data among
health departments [34]. The geographic mapping of any health condition is a cogent framework
to comply with legal requirements as it assumes that the health condition has an underlying spatial
pattern [35] and that it is well positioned to capitalize on the extensive toolbox of geospatial methods
to identify where underlying spatial patterns exist to direct strategic planning [36].

We argue, however, that using the county level as the spatial unit may smooth out much of the
spatial variability conducive to effective strategic planning for certain health conditions. Therefore,
the contention is that aggregating confidential health data temporally and spatially yields results
that are stable at the census tract level. In particular, we study the use of temporal moving windows
spanning multiple years to reduce uncertainty in prevalence rates resulting from small counts in small
geographies. Windowing is aimed at detecting the stable spatial patterns embedded in a spatial data
series, including possible hot and cold spots, when spatial data series are based on small-n data sets,
such as a number of chronic diseases in urban settings. As a corollary, this temporal smoothing reduces
the sensitivity of longitudinal analysis to annual fluctuations that could be ascribed to non-systematic
causes. Hence, it is anticipated that sensitive temporal windowing smooths out seemly random effects
to reveal longitudinal trends.

3. Data and Methods

3.1. Data Collection

We conducted a secondary data analysis of 2011–2014 birth certificate data from Mecklenburg
County, North Carolina, which is the county in the Southeastern United States that encompasses the
City of Charlotte. Mecklenburg County has a population of nearly one million people, mostly living
in the urban area of Charlotte. The study was approved by the Institutional Review Board at the
University of North Carolina at Charlotte and conducted in cooperation with staff from Mecklenburg
County’s Health Department. Census tracts are obtained from SimplyAnalytics, which interpolates
census tracts though time to 2010 geographic boundary files [37].

The sample consisted of 2011–2014 birth certificates showing hypertension of the mother during
pregnancy in Mecklenburg County. Mecklenburg County also has both racial or ethnic and economic
diversity, and a sufficient number of census tracts (n = 233) for geographic statistical analysis. At the
time of the study, 2014 was the most recent year with complete hypertension birth certificate data.
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Mecklenburg County Health Department provided birth certificates showing hypertension at birth (n
= 887).

3.2. Variables

We selected hypertension during pregnancy as the health outcome because of Mecklenburg
County’s intent to explore contextual associations of place and behavioral or disease outcomes from
chronic diseases. This is a path towards a healthier population that a number of urban jurisdictions
across the globe are taking to improve the quality of life offered to their citizens and reduce the
incidence of social disparities. The variable was also selected because pregnant women are routinely
screened for having elevated blood pressure.

Hypertension while pregnant can lead to acute health problems for the mother, such as seizures
and death, or to long-term health problems, particularly with the kidneys and liver [38]. Gestational
hypertension also affects the fetus and contributes to infants being born prematurely. Hypertension
during pregnancy affects an estimated 5 to 15% of all pregnancies [39,40], with one study finding 20% of
women pregnant for the first time developing high blood pressure during the pregnancy [41]. In addition
to biological causes of hypertension, various social factors contribute to developing hypertension.
Studies have associated racism and segregation with hypertension across populations [42] and among
pregnant women [43]. Such studies suggest that place matters for pregnancy health. Overall, the
seriousness, prevalence, and social aspects of hypertension during pregnancy makes it worthy of a
geographically focused analysis.

To operationalize the analysis of hypertension incidence, we relied on variable definitions used
on North Carolina’s birth certificate to create an annual, two-year moving average, and three-year
moving average of prenatal hypertension rate. The annual prenatal hypertension rate is calculated as:

=
(Case Count)t

Xt
× 1000 (1)

The two-year moving average prenatal hypertension rate is calculated as:

=
(Case Count)t−1 + (Case Count)t

Xt−1 + Xt
× 1000 (2)

The three-year moving average prenatal hypertension rate is calculated as:

=
(Case Count)t−2 + (Case Count)t−1 + (Case Count)t

Xt−2 + Xt−1 + Xt
× 1000 (3)

where X is the annual number of total births per census tract derived from the Mecklenburg County
Health Department birth certificates. In total, four annual hypertension rates were calculated, as well
as three two-year moving averages and two three-year moving averages.

3.3. Analysis

Birth certificate geocoding was conducted at Mecklenburg County’s Health Department. Each
birth certificate address was coded with longitude and latitude coordinates by matching home
addresses against the county’s master address file and then, using ArcGIS software, aggregated
to the corresponding census tract. We achieved a 98% match rate, which is consistent with the
literature [44,45]. We excluded 2% of the final geocoded addresses based on being outside Mecklenburg
County. The geocoded birth data were then linked to census tracts using a spatial join yielding a 100%
match. Smaller geographic units, such as census blocks and census block groups, could not be used to
aggregate individual records to because the dataset was too small, which would have violated the
HIPAA requirements.
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To investigate the presence and extent of spatial autocorrelation, we calculated the hypertension
rate per census tract in ArcGIS. With each census tract having a hypertension rate, the dataset is
prepared to run the exploratory spatial data analysis [46]. There are many methods to investigate
spatial autocorrelation. One of the most widely used geographic tools to illustrate the uneven spatial
distribution of geographic indicators in health studies, especially the clustering of diseases, is Moran’s
I (both global and local) [47–50]. This statistic has the advantage to display various types of spatial
distribution characteristics [51].

The Global Moran’s I is a measure describing the overall relationship of spatial dependence
across all geographic units for the study area. Thus, only one value is derived to determine if spatial
association exists (that is if similarly valued tracts tend to be neighbors). The global Moran’s I model
uses a Moran’s I value, a z-score, and a p-value to formally test the null hypothesis of spatial randomness
in a dataset [52]. The global Moran’s I statistic evaluates whether a clustered, dispersed, or random
spatial pattern exists [53,54]. The global Moran’s I is calculated from the following formula:

I =
n
∑n

i=1
∑n

j=1 wi j
(
xi −X

)
(x j −X)∑n

i=1
∑n

j=1 wi j
∑n

i=1 (x−X)2 (4)

where xi and xj are the values of hypertension in census tracts i and j in the study area, wij corresponds
to the weight between census tracts i and j as defined in the spatial weight matrix, and n represents
the total census tracts in the study area. The spatial weight matrix is formed from weight coefficients.
It is the formal expression of spatial dependence between spatial entities that collectively constitute
the study area. This paper follows a common strategy to determine a spatial weight based on border
sharing. For example, census tracts in Mecklenburg County, NC, are represented by i and j. When two
tracts are adjacent to one another (neighbors), the value of wij will be 1. If the tracts do not share a
border, they are not deemed to be neighbors, and wij will have a value of 0. The criterion of vicinity
used to calculate Global Moran’s I was the Queen criterion, which considers polygons that share any
border (edge or vertex) as neighbors. We estimated the Global Moran’s I statistic for each annual,
two-year moving average, and three-year moving average using a 999 randomized permutations, and
a significance set at p < 0.001.

Also using ArcGIS, we conduct analysis with a local indicator of spatial association (LISA), which
is the local version of Moran’s I autocorrelation statistic, to assess the degree of difference between each
census tract and its own neighbors [55]. The LISA analysis focuses on patterns surrounding individual
spatial observations. The Local Moran’s I is calculated from the following formula

Ii =
xi −X

S2
i

n∑
j=1, j ,i

wi j
(
x j − X

)
(5)

With
S2

i =
∑

i

(x, −X)
2
/n− 1 (6)

where the xi is the attribute of spatial feature i, X is the mean of the corresponding attribute, wi j is the
spatial weight between features i and j, and n being the total number of features. An I that has a positive
value indicates the feature has a neighbor with similar high or low attribute values. This feature is then
part of the cluster. An I that has a negative values indicates a feature has a neighbor with dissimilar
values. This feature would be an outlier, with negative spatial autocorrelation. The associated p-value
calculated must be small enough for the highlighted cluster to be considered statistically significant.

With the LISA analysis, two maps are produced: one shows the statistical significance of local
clusters, the LISA Significance Map, and the other the distribution of four potential local spatial
outcomes based on a difference gradient between the rates in a given census tract and the average
rate in its neighboring census tracts [56]. The LISA output identifies four categories of clusters based
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on the spatial autocorrelation (Table 1). Hot spots in our analysis refer to census tracts with high
prenatal hypertension surrounded by census tracts with high prenatal hypertension. Cold spots refer
to census tracts with low prenatal hypertension surrounded by other census tracts with low prenatal
hypertension. The high-high and low-low census tracts highlight the core of the clusters, whereas
the high-low and low-high census tracts represent spatial outliers. We ran the LISA process for each
annual, two-year moving average, and three-year moving average hypertension rate with a queen
spatial contiguity weight and 999 randomized permutations, and a significance set at p < 0.001.

Table 1. Relationship of high and low rates in focal and surrounding census tracts as revealed though
LISA analysis.

High Rates in Focal Census Tract Low Rates in Focal Census Tract

High Average Rates in
Surrounding Census Tracts “Hot spots” Spatial outlier

Low Average Rates in
Surrounding Census Tracts Spatial outlier “Cold spots”

To this end, our study incorporates global indicators of spatial autocorrelation and LISA to
compare spatial clustering of hypertension in Mecklenburg County from 2011 to 2014. The goal is to
assess the spatial clustering over time to identify how using temporal windowing reduces the amount
of noise with the use of a small-n in our study area.

4. Results

The geographic variation in prenatal hypertension rates per census tract in Mecklenburg County
appears to reveal a non-random spatial pattern in the annual, two-year moving average, and three-year
moving average (Figures 1–3). This spatial pattern is formally tested with Moran’s I and LISA statistics.
Given the geography of census tracts and the series of prenatal hypertension rates, we find the
distribution of prenatal hypertension exhibits a significantly positive Moran’s I statistic for each of the
eight data series tested (Table 2), indicating a level of positive spatial autocorrelation in hypertension
across the county. The four categories of hot and cold spot census tracts are seen in the LISA maps of
Mecklenburg County (Figures 4–6) and the LISA results are documented in Table 3.

Table 2. Moran’s I statistic by year.

Year(s) Moran’s I Statistic

2011 0.067
2012 0.071
2013 0.095
2014 0.068
2011–2012 0.037
2012–2013 0.067
2013–2014 0.010
2011–2013 0.106
2012–2014 0.108

All years significant at p < 0.001.
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 Figure 1. Annual prenatal hypertension rate per 1000 births in Mecklenburg County, NC for (a) 2011
(b) 2012 (c) 2013 (d) 2014.
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 Figure 2. Prenatal hypertension rate per 1000 births: two-year moving average in Mecklenburg County,
NC for (a) 2011–2012 (b) 2012–2013 (c) 2013–2014.



Urban Sci. 2019, 3, 75 9 of 17

1 
 

  

(a) (b) 

 Figure 3. Prenatal hypertension rate per 1000 births: three-year moving average in Mecklenburg
County, NC for (a) 2011–2013 (b) 2012–2014.
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Table 3. LISA results.

Year Significant Tracts Hot Spot Cold Spot

Annual Prenatal
Hypertension Rates

2011 36 6 17
2012 23 2 8
2013 45 12 18
2014 41 9 17

Two-Year Moving Average
Prenatal Hypertension Rates

2011–2012 43 6 14
2012–2013 43 10 19
2013–2014 52 13 26

Three-Year Moving Average
Prenatal Hypertension Rates

2011–2013 50 12 22
2012–2014 49 11 22

Overall, the incidence of prenatal hypertension does not happen randomly in the urban region
under study. When we look at neighborhoods within the Mecklenburg County region, we find that hot
spots tend to be loosely found in a crescent to the north of the county center throughout the study years.
However, hot spots tend to shift to western portions of Mecklenburg County in 2013 and become more
prominent in the east in 2014. These areas are known to be associated with the social geography of the
region, particularly with a large proportion of African American and Hispanic populations, with lower
educational attainment, and lower socio-economic status (i.e., higher poverty rates, lower household
income, higher unemployment) [57]. Prenatal hypertension cold spots are mainly found in an area
fanning out south from the county center as well as in the northern section of the county; this spatial
pattern carries through the study period. Cold spots are found in neighborhoods with large presence
of Caucasian populations, higher educational attainment, and higher socio-economic status [58]. Hot
and cold spots fall in these areas with greater consistency as temporal windowing is applied to the
yearly series, which suggests this is the discernable trend in prenatal hypertension once noise has been
filtered out. Finally, while tracts that are outliers begin to fade away over time, hot and cold spots
become more prominent. Hence, when noise caused by small-n annual statistics is controlled for, the
same neighborhoods of the city continue to be separated by sharp health disparities epitomized by hot
and cold spots in prenatal hypertension.

5. Discussion

Identifying the location of at-risk hot spot communities provides an opportunity to refine
place-based health programs in urban regions with the use of temporal windowing. Geospatial
analysis makes it feasible for local health departments to analyze their own data while complying
with regulations and ethics related to protection of human subjects for public health surveillance and
planning purposes. With a few procedures, existing data and publicly available databases can be
leveraged by geocoding birth and death certificates to explore those data from different perspectives
such that hot spots of census tracts can be pinpointed for further investigation, including for further
confirmatory analysis of spatial epidemiology.

In the case of Mecklenburg County, chronic diseases such as hypertension continue to be cited
as high priorities in the 2010–2018 Community Health Assessments (CHA) [59]. Although the CHA
allows health departments a place to compile health priorities for the county, one major challenge
health departments face is understanding the impact of initiatives aimed at reducing health disparities.
With CHA conducted every 4 years, the county intends to track the overall indicator of women who
have a history of one or more chronic diseases. However, Charlotte administrators have not tracked
where hypertension hot spots are located, and whether these hot spots shrank or expanded over time.

In Charlotte, communities that have the highest priority in the CHA tend to have less education
and income and live in neighborhoods which lack access to healthy food and safe places for recreation.
Spatially, a crescent-shaped area of poverty and low-educational attainment has formed around
the center city of Charlotte. These residents may also be exposed to risk factors that increase their
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chance for chronic disease. Our results demonstrated that once temporal windowing is used with the
hypertension data, especially the two- and three-year windows, hot spot clusters emerged from these
traditionally segregated communities in the Charlotte area. The benefit of tracking hypertension in
Charlotte with Moran’s I and LISA analysis at census tracts is that it is possible to identify whether
health departments achieve their goals from assessment to assessment. Although county level spatial
aggregation continues to be in use routinely in most urban areas, this level of analysis precludes this
type of surveillance and is rather ineffective to fully inform decision makers on where to target their
efforts and on whether past efforts were successful.

Studying a series of spatial health data through a finer-scale analysis—such as the
neighborhoods—allows a better understanding of local health outcomes and risk factors over time.
Incorporating smaller geographies into a GIS can also aid health administrators by incorporating the
location of hospital and medical facilities to address whether proximity influences the spread of the
hot or cold spots. Moreover, U.S. Census and American Community Survey demographic data can be
linked to see whether trends correlate with socio-economic conditions. Linking these data into the
CHA will require collaboration with data stewards and adequate training of public health practitioners
so that the benefits of using these data can be fully realized. In this way, a more tailored approach to
surveying health priorities can be undertaken.

Our findings support that data spatially aggregated to the tract level lead to results that contribute
to increased capacity to identify local clusters [60]. We also show that data stability and greater
consistency in the significant spatial patterns can be obtained through a temporal windowing approach,
which is an important achievement for strategic planning when rates are based on small numbers.
Another type of models, known as Bayesian hierarchical models, have also been used to address
sparseness in populations and cases, allowing for an adaptive smoothing approach [61]. This can,
however, create overly smoothed maps, masking true risk distribution. The degree of smoothing used
is a trade-off between high sensitivity and high specificity [62]. Prior research suggests that a numerator
of 20 or more is needed to produce fairly stable estimates [63]. Also, it is well known that denominator
data that rely on annual data sampling to apprehend the at-risk population (denominator)—such as
annual American Community Survey data—is affected by large and spatially variable margins of error
across the urban region. While some methods have been developed to provide unbiased estimates of
statistics [64,65], many analyses continue to ignore this important and impactful data uncertainty [66].

We also acknowledge a key limitation in spatial analytics when dealing with aggregated data,
such as census tracts. The possibility exists of having a Modifiable Areal Unit Problem [67], in the form
of a scale effect or of a zoning effect. The scale effect arises when different results are attained due to
variations in the scale of aggregation units. This implies that using census tracts rather than zip codes,
for example, can lead to different findings. The zoning effects occur when a constant scale of analysis is
used with a variation in the shape of aggregation units. This is the situation for census tracts, as well as
zip codes and county boundaries. We did not test for scale or zoning effect because the study was to
document how administrators can use confidential data. Further research is needed to understand
which of the commonly used geographic scales is more useful for public health planning and under
which conditions.

6. Conclusions

With tight state budgets limiting health department’s funds, using LISA on spatially aggregated
secondary health data with a GIS provides for a targeted and more efficient approach to health
resources planning, enabling monitoring of socio-economic determinants of health at a geographic
scale commensurate with policy making and assessment. With the use of temporal windowing,
administrators can reduce the effect of random noise while using a health indicators that are based
on a small number of cases. The geographic tools used in this study are not intended to draw
any causal conclusions about the spatial patterns that emerge from the analysis. Instead, they are
powerful, effective, and robust for pattern detection and monitoring to enhance health administrator’s
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understanding of the processes that occur at the neighborhood or community level, such as census
tracts, or whichever level administrators deem appropriate for the data to be aggregated too. Over
time, the use of these tools will help local health departments identify how heath indicators change
and what socio-demographic data associate with those changes.

We successfully demonstrated the application of this geospatial health analytics research design
to the case of prenatal hypertension in the urban setting of Mecklenburg County, and because it is easy
to reproduce, argue for its broad use in public health departments as part of their standard analytic
toolbox. Tracking a system of sub-county data will allow public health officials in different urban
contexts to benefit from our research by better understanding local health outcomes and risk factors
over time. Incorporating these data into a collaborative urban network is advocated so that the benefits
of using these data can be fully realized and identified challenges resolved.
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