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ABSTRACT The ongoing COVID-19 global pandemic is touching every facet of human lives
(e.g., public health, education, economy, transportation, and the environment). This novel pandemic
and non-pharmaceutical interventions of lockdown and confinement implemented citywide, regionally or
nationally are affecting virus transmission, people’s travel patterns, and air quality. Many studies have
been conducted to predict the diffusion of the COVID-19 disease, assess the impacts of the pandemic
on human mobility and on air quality, and assess the impacts of lockdown measures on viral spread
with a range of Machine Learning (ML) techniques. This literature review aims to analyze the results
from past research to understand the interactions among the COVID-19 pandemic, lockdown measures,
human mobility, and air quality. The critical review of prior studies indicates that urban form, people’s
socioeconomic and physical conditions, social cohesion, and social distancing measures significantly affect
human mobility and COVID-19 viral transmission. During the COVID-19 pandemic, many people are
inclined to use private transportation for necessary travel to mitigate coronavirus-related health problems.
This review study also noticed that COVID-19 related lockdown measures significantly improve air quality
by reducing the concentration of air pollutants, which in turn improves the COVID-19 situation by reducing
respiratory-related sickness and deaths. It is argued that ML is a powerful, effective, and robust analytic
paradigm to handle complex and wicked problems such as a global pandemic. This study also explores the
spatio-temporal aspects of lockdown and confinement measures on coronavirus diffusion, human mobility,
and air quality. Additionally, we discuss policy implications, which will be helpful for policy makers to
take prompt actions to moderate the severity of the pandemic and improve urban environments by adopting
data-driven analytic methods.

INDEX TERMS COVID-19, coronavirus, pandemic, machine learning, public health, human mobility, air
quality, review, spatio-temporal analysis.

I. INTRODUCTION
The Coronavirus disease 2019 (COVID-19) is an ongoing
global pandemic and public health crisis that was first
reported inWuhan, China, in December 2019 [1]–[5]. Human
movement and interactions are significantly affected by
the COVID-19 pandemic [6]–[8]. Besides affecting healthy
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living, this highly infectious disease is influencing every
domain of human lives (e.g., mental health, social life, edu-
cation, economy, global supply chains, production, mobility,
energy consumption, environment, and so on) [2], [9]–[15].
This study aims to summarize the results from selected
studies conducted recently using Machine Learning (ML)
techniques to portray the interplay between the COVID-19
pandemic, human mobility, and air quality. We also study
the spatio-temporal impacts of lockdown and confinement
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measures on coronavirus diffusion, human mobility, and
air quality. Consequently, this study will be helpful for
policymakers to take immediate actions to mitigate the sever-
ity of the pandemic and improve human well-being in urban
environments, and in the longer term, it will help them be
better prepared to handle future pandemics.

As of January 20, 2021, more than 97 million people
from 218 countries have been infected and 2.08 million peo-
ple have died; this amounted to critical conditions in 0.4%
of active cases and a fatality rate of about 3% of closed
cases [16], [17]. Aggregating the total number of confirmed
infection cases and deaths by the World Health Organiza-
tion (WHO), it is observed that countries in the Americas
constitute the most affected region in the world, with about
43.87% of all confirmed cases and 47.61% of the deaths
(Fig. 1). Europe is the second most affected region with
32.18% of confirmed cases and 32.19% of deaths, followed
by South-East Asia with 14.31% of confirmed cases and
10.03% of deaths. In contrast, the Western Pacific Region is
the least affected with 1.34% of confirmed cases and 1.11%
of deaths worldwide.

FIGURE 1. COVID-19 confirmed cases and deaths (%) by WHO region
(January 6, 2021).

Controlling the outbreak of COVID-19 has become amajor
concern of governments and public health professionals.
Different measures such as stringent travel restrictions and
self-quarantine measures (e.g., lockdown, emergency stay-
at-home orders, closing of public transportation systems,
travel ban, restrictions on public gathering, closure of work-
places and educational institutions) and personal protective
measures (e.g., face masks, gloves, hand sanitizer stations)
have been implemented [2], [10]–[12], [18]–[20] throughout
the world to control the COVID-19 outbreak. These vari-
ous measures undertaken by governments have influenced

both essential (e.g., work) and non-essential (e.g., recre-
ation) trips. For example, lockdown measures undertaken in
Singapore to mitigate the pandemic caused a 30% reduction
in mobility [21]. A 64.6% reduction in private vehicle trips
was observed in Rome, Italy, during lockdown periods of
March-April 2020 [22]. Similarly, about 80%, 23%, and
2% reduction in public transport, cycling and bike-sharing,
respectively, were observed in Budapest, Hungary [23].
In contrast, a 43 to 65% increase in car travel was reported
in Budapest, Hungary, due to the voluntary practice of social
distancing and avoidance of public transportation. Air trans-
portation has also been devastated by this COVID-19 situa-
tion. Researchers have reported that Canadian Civil Aviation
and military aviation activities dropped by 71% and 27%,
respectively, compared to the business as usual situation [13].
Thus, the widespread diffusion of COVID-19 has adversely
affected all modes of transportation.

Strict confinement measures have seriously affected
mobility in public places and spaces. Fig. 2 shows these
effects in selected countries (US, Brazil, India, and New
Zealand) during the period from February 17 to Novem-
ber 27, 2020. The figure shows a reduction in the number
of visitors (%) in retail and recreation outlets, groceries and
pharmacies, parks, transit stations, and workplaces compared
to the baseline scenario (i.e., the median value of the day
for the 5-week period starting from January 3 to February 6,
2020), with a deeper reduction in March and April. In con-
trast, the number of visitors has increased in residential areas
due to implemented social distancing measures (i.e., stay-at-
home order), which exemplifies the adverse impacts of the
pandemic on people’s travel patterns.

The COVID-19 pandemic has also had substantial impacts
on air quality. As a primary method of slowing down the
spread of COVID-19, initially, a lot of countries imposed
lockdown or confinement measures to enforce strict social
distancing regulations. As a result, businesses and shops
were closed, manufacturing activities were either stopped or
shrunken while the number of vehicles in cities has declined
dramatically [24]–[26]. Therefore, lockdown and confine-
ment measures played a critical role in curtailing emissions
and in improving overall air quality. Improved air quality
refers to the reduction of concentration of criteria pollutants
such as NO2, SO2, PM10, PM2.5, CO2 in the air. According
to the International Energy Agency (IEA), the global energy
demand decreased by 3.8% in the first quarter of 2020 com-
pared to the same period of 2019 because of the sudden
reduction in economic activities and mobility [24]. Many
recent studies on urban air quality have estimated the impacts
of lockdown and confinement measures on various criteria
pollutants. These studies mainly estimate the business as
usual concentration of the pollutants for 2020 based on cli-
mate variables using ML algorithms. Finally, the impacts of
the lockdown and confinement on air quality were assessed
by comparing the estimated baseline concentration with
actual concentration of pollutants in 2020. Some studies
explored the relationship between pre-existing air pollu-

VOLUME 9, 2021 72421



M. M. Rahman et al.: ML on the COVID-19 Pandemic, Human Mobility and Air Quality: A Review

FIGURE 2. Longitudinal changes in mobility in selected countries.

tion and COVID-19 mortality rates in different sections of
cities.

Considering the magnitude of these effects, this study has
been conceptualized as a survey of previous research on the
impacts of the COVID-19 pandemic on urban mobility and
air quality and their associations. It focuses particularly on
past studies that used various machine and deep learning
approaches to evaluate the relationships among these con-
cepts and conditions. With the advent of novel data tech-
nologies, methods of ML have been used extensively in
disease prediction [27]–[29], transportation modeling [30],
[31], economic analysis [32], [33], environmental modeling
[34], [35], public sentiment analysis [36], [37], etc. due to
their remarkable computational ability to extract meaningful
relationships between input and output features from large
and complex datasets that are semantically diverse and that
exhibit heterogeneous spatial and temporal granularity [38].
The problem at hand exhibits multi-scalarity (from the indi-
vidual, to the family, the community, the region, the nation,
and eventually the global humanity), and other properties
such as endogeneity, non-linearity, non-independence, ambi-
guity and contextuality, that legitimately make them so-called
‘‘wicked problems’’ [39], [40]. ML has proved very effec-
tive to tackle such problems. Learning-based algorithms
can retrieve meaningful features from a large volume of
data to predict outcome accurately and are able to reveal
the hidden patterns in the data set that were previously
unknown [41]–[43]. At variance with traditional data pro-
cessing systems, ML algorithms build models based on exist-
ing data with little or no distributional requirements for future

predictions or decision making, which increases their perfor-
mance tremendously [44].

In this regard, many studies have used ML and deep learn-
ing along with epidemiologic compartment models, such as
the SEIR (susceptible-exposed-infectious-recovered) model,
to predict COVID-19 transmission rates and evaluate its
impacts on public health, urban mobility and the environ-
ment. Thus, considering the model prediction accuracy and
the inherent power to explore big data, this study purports
to only review the literature that used ML and deep learning
based approaches. The main objective of this study is pursued
by investigating the following research questions:
• What are the impacts of the COVID-19 pandemic on
mobility patterns of urban populations?

• What are the impacts of the COVID-19 pandemic on
urban air quality?

• How do the different aspects of COVID-19 pandemic,
human mobility, and air quality interact with each
other?

The salient contributions of this paper are five-fold:
• Identifying data sources and ML approaches that have
been used in the previous studies and could be used by
these researchers to estimate the impacts of COVID-19
on mobility reduction and on improving air quality in
urban and rural areas;

• Developing a conceptual framework to clearly artic-
ulate the complex relationships among COVID-19
reported cases (and deaths), lockdown and confinement
measures, human mobility patterns, and factors of air
quality;
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• Understanding and quantifying the impacts of the
COVID-19 pandemic on human mobility and air quality
by reviewing past literature;

• Identifying policy options that could be used by decision
makers and researchers to reduce the severity of the
pandemic, facilitate human mobility, and improve air
quality;

• Identifying potential research options that could be
adopted by researchers in their future work.

A thorough search of the literature was conducted to
select and include published articles and reports as the
foundation to perform this review study around the ques-
tions listed above. The following criteria have been consid-
ered while identifying and selecting a study for this review
task:

1) Whether the study has used ML techniques and other
hybrid techniques to understand the multifaceted rela-
tions of interest.

2) Whether the study investigated the associations
between COVID-19 pandemic, lockdown and confine-
ment measures, human mobility, and air quality.

3) Whether the article/report is written in English.
However, a few studies particularly investigating the
spatio-temporal aspects of the COVID-19 pandemic, human
mobility, lockdown policies, and air quality have been
included in this review to comprehend a complete scenario
of how this public health crisis is influencing human being,
economy, and environment over time in different geographi-
cal context. ScienceDirect, Scopus, SAGE journals, Springer,
Taylor & Francis, and Web of Science, the website of various
organizations, and Google Scholar were mainly employed to
search for relevant articles and reports. Some keywords, e.g.,
COVID-19, coronavirus, pandemic, machine learning, deep
learning, artificial intelligence, public health, human mobil-
ity, air quality, spatio-temporal, and a few others, were used
to search for pertinent papers and reports. A number of addi-
tional articles were found from the bibliographic references
of the articles downloaded from the search. Finally, these
research items are critically analyzed to understand the com-
plex and multi-scalar relationships between the COVID-19
pandemic, human mobility, lockdown and confinement poli-
cies, and air quality.

The rest of the paper is organized as follows. Section II
demonstrates the conceptual framework of the study.
Section III discusses the interrelationships among human
mobility patterns, COVID-19 transmission, confinement
measures, travel patterns, socioeconomic factors etc. The
impacts of COVID-19 on urban air quality are featured in
section IV. Spatio-temporal impacts of lockdown measures
on COVID-19 diffusion, human mobility, human mobility,
and air quality are discussed in section V. Finally, section VI
concludes this paper with citing some interesting future
research directions pertaining to COVID-19 and machine
learning.

II. CONCEPTUAL FRAMEWORK
Based on existing relevant theories and concepts, a concep-
tual framework has been developed in this review study,
Fig. 3. This figure depicts that the urban form and structure,
people’s socioeconomic characteristics, health factors, social
networks, civic engagement, and different lockdown and
confinement measures significantly influence the COVID-19
pandemic. For example, high population density and public
places and spaces are positively associated with COVID-19
because of increased interaction among the people. Elderly
people and people with certain health conditions are more
vulnerable to COVID-19. Similarly, limited access to health
resources (e.g., hospitals, clinics, physicians) increases the
risks of the pandemic. On the other hand, strong agency
and institutional compliance (i.e., limited social engage-
ment) and lockdown and confinement measures significantly
reduce community transmission of COVID-19. These factors
also influence human mobility patterns, travel mode choice
behaviors, and travel purposes. For example, usually, the peo-
ple in high-density areas are more likely to use public trans-
portation, active transportation (e.g., walking, bicycling), and
less likely to use private cars. But during the COVID-19
situation, the elderly, children, and disabled people are less
likely to use public transport and more likely to use private
cars to reduce infection risk. The lockdown and confine-
ment measures significantly reduce human mobility in both
essential (e.g., work, healthcare facilities) and non-essential
(e.g. parks, fitness centers) trips. People adjust their travel
schedules and change travel patterns to avoid infection risks.
Thus, there is a bidirectional relationship between human
mobility and the spread of the virus. The severity of the
pandemic also influences governments and decision makers
to impose lockdown measures to reduce the infection rate
or slow the pace of growth (the so-called ‘‘flattening of the
curve’’).

Air quality significantly depends on urban form and
structure. Industrial development, urbanization, and higher
use of private transportation degrade air quality in urban
areas. However, air quality has significantly improved during
the COVID-19 lockdown periods thanks to reduced human
mobility and to the closure of many workplaces and indus-
tries. Improved air quality, in turn, lessens COVID-19 related
deaths, particularly among people with chronic respiratory
illnesses. Thus, similar to human mobility, COVID-19 has a
bidirectional association with air quality.

III. HUMAN MOBILITY PATTERNS
This section discusses the interrelationships among the
COVID-19 transmission, confinement measures, socioeco-
nomic factors, human mobility and people’s travel pat-
terns, etc., based on prior studies that used ML techniques.
A graphical presentation of these complex relationships is
provided in Fig. 3 to support the conceptual framework of this
work (Section II). A summary of this literature is provided
in Table 1.

VOLUME 9, 2021 72423



M. M. Rahman et al.: ML on the COVID-19 Pandemic, Human Mobility and Air Quality: A Review

FIGURE 3. Conceptual framework of the study. Topics broached in the different sections are color coded according to the labeling used in the legend.

A. IMPACTS OF THE COVID-19 PANDEMIC ON MOBILITY
AND TRAVEL PATTERNS
It is observed that COVID-19 significantly influences peo-
ple’s travel habits for both essential and non-essential trips.
The McKinsey Center for Future Mobility (MCFM) [65]
studied the key factors impacting travel mode choice behav-
iors of people in China, France, Germany, Italy, Japan,
the UK, and the US before and during the COVID-19 pan-
demic, Fig. 4. Originally published by MCFM, the figure has
been modified and recreated by the authors to compare mode
choice behaviors of people before and during the COVID-19
pandemic and the determinants in the selection of a particular
mode of transportation during the pandemic. Travel time,
cost, and convenience played a significant role in people’s
travel mode choices for business, commuting, and personal
trips before COVID-19 and before similarly disruptive con-
ditions. However, during this pandemic, reducing the risk
of infection has become people’s primary consideration in
deciding on their travel mode. Thus, the use of personal cars,
cycling, walking, and sharedmicro-mobility has outpaced the
use of various forms of public transportation.

Wang et al. [46] investigated the impacts of post-
COVID-19 reopening strategies on travel patterns and mode
choices of people in New York and Seattle, US. Based on
the data collected, these authors observed a reduction in

subway ridership in May 2020 compared to the 2019 level.
An agent-based simulation demonstrates that full reopening
could only expect about 73% of the pre-pandemic transit
ridership, but on the flip side, an increase in private car
ridership by 142%. Similarly, the number of walking trips
and bike trips would increase by 101% and 104% of the
pre-pandemic levels, respectively. Applying a 50% capacity
restriction on public transit to support the practice of social
distancing, the study noted a predicted decrease in transit rid-
ership to 64%, whereas car trips would increase by 143% and
bike trips by 123%. Using a deep-learning based real-time
video processing method of feature recognition, they found
an increasing number of pedestrians at multiple locations in
New York in May. They also observed a reduction in pedes-
trians practicing 6-feet social distancing guidelines from 91%
on April 2 to 86% on May 27. Although pedestrian density
was found low at some other locations, car and pedestrian
density began to increase during the peak hour periods due
to travel of essential workers, but the density of bicyclists
was similar to the pre-pandemic situation. In a similar study
context (i.e., Detroit, US), researchers in [58] investigated the
impacts of the pandemic and social distancing measures on
traffic volume on the transportation network and on safety.
Collecting data from 73 signalized intersections, they men-
tioned that, aside from the continued dominance of car trips,
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TABLE 1. Geographical context and objectives of past studies of COVID-19 and human mobility.

FIGURE 4. Key reasons to choose transportation modes before and during the COVID-19 pandemic, modified from.

the number of bicycle and motorcycle trips has mushroomed
four-fold during the COVID-19 pandemic. The number of
trucks and vans remains unchanged before and during the
confinement and lockdown periods. However, a 40% increase
in the number of trucks and vans was observed when restric-
tions were lifted. Thus, the COVID-19 pandemic, reopening
strategies, and confinement and lockdown measures have
severe impacts on personal mobility and on the state of the
urban transportation system more generally.

In a recent survey, MCFM [66] discovered that about 70%
of respondents would choose walking or cycling at least

once per week, even after returning to normal life, which is
more than 6% higher than the pre-crisis situation. Similarly,
private car-sharing would increase from 78% to 79% in the
post-pandemic scenario. However, despite a dramatic drop
during the pandemic, transit ridership would return to its
pre-existing conditions at around 40% on average across
all surveyed countries. Similarly, shared micro-mobility and
car-sharing would be slightly more popular (i.e., 1 to 2%)
after returning to normal life. Thus, while travel mode choice
behaviors of the people are found to be significantly affected
by the COVID-19 pandemic, people’s overall travel patterns
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would be expected to bounce back to their state before the
pandemic.

COVID-19 has also significantly affected the social and
economic aspects of tourism and associated industries (e.g.,
air transportation) in major tourist destinations around the
world. Polyzos et al. [51] forecasted the effects of the
COVID-19 pandemic on Chinese tourist arrivals in the US
and Australia. Using data from the 2003 SARS outbreak,
they trained a deep-learning-based Long Short-Term Mem-
ory (LSTM) neural network model to predict the social and
economic impacts of the pandemic on the tourism industry.
The trained model is calibrated considering the particulars of
current situations (e.g., lockdown, flight bans) to simulate the
impacts of a COVID-19-like pandemic on the tourism indus-
try. The results indicate a significant drop in tourist arrivals
in the US and Australia from China. Upon cross-validating
the findings with backtesting techniques (i.e., the sample is
split into smaller training sets and error is used to train the
model), the researchers commented that it would require 6
and 12 months for tourist arrival rates to Australia and the
US, respectively, to recover to their pre-pandemic levels after
the recent collapse of the industry. They also mentioned
that the LSTM technique performs better than other arti-
ficial neural networks (e.g., hidden Markov, Support Vec-
tor Regression) and forecasting models, such as ARIMA
(Auto-Regressive Integrated Moving Average), to predict the
impacts of COVID-19.

The changes in pedestrian activities in public places
(e.g., tourist attractions, residential areas) because of
COVID-19 have been investigated in [47] for Cracow,
Poland, using YOLO (You Only Look Once) - an ML algo-
rithm that allows easy and less erroneous end-to-end object
detection. After collecting data fromwebcams located at pub-
lic sites covering the period of June 9, 2016, to April 19, 2020,
the images are first split into smaller tiles, which increases
pedestrian detection capacity by more than 50%. Estimating
hourly, daily and weekly averages of pedestrian activities,
the study observed a 34-50% reduction in pedestrians in
residential zones and a 78-85% reduction in touristic local-
ities due to lockdown and confinement measures during the
COVID-19 pandemic. The study claimed that the proposed
method is more efficient to detect and count pedestrians
from time-lapse webcam images than other approaches such
as Single Shot MultiBox Detector (SSD), existing YOLO
and Faster Region-based Convolutional Neural Network
(R-CNN), in terms of mean absolute error (i.e., 4.28 vs 9.87,
5.48, and 5.38, respectively) and root mean square error (i.e.,
7.96 vs 14.32, 10.23, and 9.16, respectively). However, it has
a longer processing time (3.28s) compared to existing YOLO
(0.75s) and SSD (1.46s), although a lower processing time
than Faster R-CNN (8.35s).

Changes in human mobility and activity patterns can also
be evidenced through the impact the pandemic would have
in other economic sectors such as energy consumption. The
pandemic oil demand analysis (PODA) is a ML technique
proposed in [67] to project US gasoline demand during the

COVID-19 pandemic. It consists of two projection mod-
ules. The first, dubbed the Mobility Dynamic Index Fore-
cast Module, identifies the changes in travel mobility caused
by the evolution of the COVID-19 pandemic. The second,
the Motor Gasoline Demand Estimation Module, estimates
vehicle miles traveled on pandemic days, while consider-
ing the dynamic indices of travel mobility, and quantifies
motor gasoline demand by coupling the gasoline demands
and vehicle miles traveled. The prediction model used Apple
and Google mobility data and showed a significant reduction
in US gasoline demand in March and early April of 2020.
Another study [68] proposed to use mobility data as a com-
plementary component in a day-ahead electrical load forecast
model based on a multi-task neural network and showed that
the load forecasting accuracy can be improved significantly.
This study also found that the sudden changes in electric
consumption due to the COVID-19 pandemic cause higher
forecasting error.

The above discussion clearly demonstrates that COVID-19
has significant impacts on urban transportation systems by
influencing people’s travel patterns and mode choice behav-
iors (Table 2) and their energy consumption. During this
pandemic, people adjust not only the sheer volume of their
travel, but also their travel schedule, route, and modes to
reduce potential health risks to themselves and to others.
Consequently, it also indirectly affects other sectors of the
economy (e.g., office businesses, manufacturing, retail and
services). Overall, this pandemic is found to affects human
lives and the economic system of society very broadly and
very deeply.

TABLE 2. Travel mode and purpose discussed in different studies.

B. COVID-19 PREDICTION MODELS TO UNDERSTAND THE
FACTORS AFFECTING VIRUS DIFFUSION
Many researchers have used Artificial Intelligence (AI) to
predict coronavirus infection rate, recovery, and death rate
with good accuracy throughout the world. These researchers
used compartmental models (such as the standard SEIR
model or one of its variants), ML based models, and
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hybrid models to predict the pandemic itself. For example,
the YYG model [69] uses a simple ML technique to esti-
mate the number of COVID-19 infection cases and deaths
in a state/country. This projection model adopted the SEIR
model as the underlying simulator for generating simulated
infections under specific scenarios and the simple brute-force
grid search technique as the ML model for tuning the model
parameters. The model used two types of parameters: fixed
parameters (e.g., latency period, infectious period, time to
recovery) and dynamic parameters (e.g., reproduction rate,
mortality rate, mitigation effects).

Similarly, many studies have investigated the factors that
affect the COVID-19 transmission rate in cities and regions
on the basis of an assumed COVID-19 transmission model.
For example, Yao et al. [58] evaluated the role of transporta-
tion (e.g., traffic volume, accident), social distancing mea-
sures, and weather conditions in the incidence of coronavirus
confirmed cases. Calculating correlation coefficients, they
found that daily confirmed cases are highly correlated with
the transportation volume (e.g., cars), total crashes, social
distancing indicators, and average temperature. Using the
LSTM approach, they estimated the number of confirmed
cases per day. Model results demonstrate that the inclusion
of all selected features improved the performance of the
model to predict daily confirmed cases with lower RMSE
(0.0606), mean absolute error (MAE) (0.0378), and a high R2

(0.9088). Thus, besides daily confirmed cases and the social
distancing indicator in the previous days, the inclusion of
traffic volume, crashes, and weather conditions significantly
improves the predictive performance of the model. Consid-
ering daily inter-state traffic and air traffic data, including
the number of transfer passengers, Shirvani et al. [64] pre-
dicted new confirmed cases in Iran. Using a supervised ML
model consisting of an ensemble of linear regression, LASSO
regression, K-Nearest Neighbor (KNN) regression, random
forests, the model predicted the number of new cases with
an accuracy of 85%. The study found a positive correlation
between inter-state travel and new confirmed cases. Con-
sequently, it suggested imposing travel restrictions to limit
COVID-19 transmission and slow the spread of the pandemic.

In the US, Kuo and Fu [61] developed a COVID-19 predic-
tion model after collecting demographic, environmental, and
mobility data at the county level. Data from 172 metropolitan
counties were used to design a hybrid framework based on
eight different ML algorithms to predict daily and cumulative
confirmed cases. The final model was developed using a
general linear model (GLM) that combines the predictions
from allML algorithms. The study showed that humanmobil-
ity in the metropolitan areas was substantially reduced after
implementing lockdown measures in mid-March. Scenario
assessment results show that a 1- week and 2-week lock-
down in Phase I reopening could reduce infections by 4-29%
and 15-55% in the future week, respectively. However,
a 2-week reopening in Phase II could increase infections by
16-80%. Thus, this study suggested a mandatory lockdown
order lasting more than one week to control the COVID-19

pandemic by reducing community mobility and transmission.
Researchers in [70] investigated the non-linear relationships
of COVID-19 death rates with environmental, health, socioe-
conomic, and demographic risk factors using geographically
weighted random forests (GW-RF) non-parametric regres-
sion model in the US. Collecting county-level daily death
counts in 3,108 counties, the model showed that walking
trips to work, concentration of air pollutants, households with
a mortgage, unemployment status, and percent of black or
African Americans have a strong correlation with the spatial
distribution of COVID-19 incidence with an R2 of 0.78.

Another study in the US [59] developed a stochastic
SEIR-style epidemic model augmented by human mobil-
ity to predict historical growth trajectories of COVID-19
cases in two counties (Dane and Milwaukee) in the state of
Wisconsin. The model was combined with the data assim-
ilation (i.e., Kalman Filter) and ML techniques (i.e., Walk-
trap network) to reconstruct the COVID-19 trajectories. The
Walktrap network partitions the counties into clusters based
on the observed human mobility data. A local SEIR model
for each region was developed using geographic, socioeco-
nomic, cultural and transportation factors of the people to
get a region-specific effective reproduction number. Finally,
the combined model helps to investigate the associations of
COVID-19 diffusion with mobility patterns, business foot-
traffic, race, and age groups. The study found a strong asso-
ciation between reproduction number and visits to drinking
establishments (alcoholic beverages). It is suggested that
policy makers should explicitly consider the local transmis-
sion scenario even after restricting intra-regional movement
for preventing more health disparities in future pandemics.
In another North American country (i.e., Labrador and New-
foundland in Canada), Linka et al. [71] explored the impact
of partial and total reopening of airports on COVID-19 out-
breaks with SEIR and Bayesian Interference models. Using
data on air-traffic mobility incoming and outgoing from/to
other Canadian provinces and the US with different measures
of quarantine, the study found that relaxing travel restrictions
is possible entirely (total reopening). However, strict (100%)
quarantine conditions are necessary to control the disease out-
break. Voluntary quarantine, even at an overall rate of 95%,
is not enough to entirely prevent future outbreaks. Thus, strict
policies on quarantine after entering the city are essential to
control the massive outbreak of the pandemic.

In China, Lu et al. [63] developed an ensemble-based
back-propagation neural network (BPNN) model for pre-
dicting COVID-19 cases on the next-day. Using Baidu’s
migration data (e.g., migration index, internal travel flow
index and, confirmed cases from the 13 previous days), they
trained the model for predicting the coronavirus cases and
achieved a 97% correlation with the actual data. Multiplying
Baidu’s mobility index values by two and considering the
incremented values due to mild government interventions on
human mobility, this study reported a significant increase
in the COVID-19 cases and continuous growth for a long
time. Thus, mobility has significant impacts on COVID-19
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FIGURE 5. Impact of mobility on COVID-19 infection.

transmission. However, the researchers mentioned that the
inclusion of other social distancing measures could increase
the accuracy of the prediction. Another study in Wuhan,
China [60], proposed a fine-tuned Random Forest model
boosted by the AdaBoost algorithm for predicting the coro-
navirus cases and their possible outcomes (i.e., recovery,
death). Collecting information on COVID-19 patient’s geo-
graphic location, travel, health, and demographic features,
the study developed the prediction model using a grid search
algorithm which provides a set of best-performing parame-
ters. The model results indicate that the proposed fine-tuned
model correctly predicts the outcomes with an accuracy
of 94% and an F1 score of 0.86. The study found higher death
rates among theWuhan natives compared to non-natives. The
study also reported higher death rates of male patients than
female patients and the majority of the patients were from
20 to 70 years old.

In summary, ML is widely used in predicting COVID-19
confirmed cases, deaths, and the recovery status of popula-
tions (Table 3). These models use a variety of transportation,
demographic and socioeconomic, geographical, environmen-
tal, health, and lockdown-related factors to predict confirmed
cases and deaths. The results from these models indicate that
ML can efficiently predict the COVID-19 pandemicwith high
rates of accuracy. Most of the studies suggested putting an
embargo on the movement of people to prevent a widespread
pandemic. Yet, some of the evidence that has accumulated
points in other directions. For instance, with data on daily
trips per person and COVID-19 confirmed cases in differ-
ent US states, [72] found a positive but weak association
between the number of trips per day and the incidence of
COVID-19 confirmed cases, Fig. 5. More analytic research
that comprehensively controls for a full range of factors and
circumstances is needed to have a robust knowledge base in
which to ground policy making.

C. IMPACT OF LOCKDOWN AND CONFINEMENT
MEASURES ON MOBILITY AND COVID-19 PANDEMIC
Many studies have assessed the effectiveness of lockdown
and confinement measures and travel restrictions imposed
by state and governmental agencies to control the massive
outbreak of the COVID-19 pandemic. Al Zobbi et al. [45]
evaluated the effectiveness of these measures using data

analytics and ML. Collecting data from Google mobility
reports and UNESCO’s website, they estimated the mobility
patterns of the people at retail and recreation sites, grocery
and pharmacy outlets, parks, transit stations, workplaces,
residential buildings, and schools during the period when
the pandemic prompted lockdown orders and confinement
directives. They used the reproduction number (R0) to rep-
resent the COVID-19 pandemic in 13 countries around the
world. The daily R0 values were grouped into interquartile
ranges and close monitoring of mean values was performed
to check the efficiency of daily social distancing measures.
Random Forest (RF) and KNN methods were used to estab-
lish the direct correlation between lockdown and confine-
ment measures and pandemic severity. The results show a
higher correlation (0.68) and the least MAE. Thus, these
measures have a significant influence on the coronavirus
infection rate. Dividing lockdown efficiency into four cat-
egories from Group A (highest efficiency) to B, C, and D
(lowest efficiency), they found higher efficiency in Australia
and South Korea. Efficiency improved significantly from
group D to group B, group D to group C, and group C to B in
Germany, Spain, and India, respectively. Despite not having
strict lockdown measures, South Korea showed high effi-
ciency due to widespread self-quarantine and self-awareness
in the population. However, the US and Brazil showed lower
levels of efficiency due to the late implementation of lock-
down measures. The study concluded that the coronavirus
infection rate dramatically dropped due to strict lockdown
procedures, self-quarantine, and people’s awareness about the
disease.

By building a predictive model, researchers in [48]
assessed the impacts of different policy instruments (e.g.,
graded closing and reopening of retail stores, workplaces,
businesses, places of entertainment and worship, and restric-
tion on mobility) on the COVID-19 transmission rate in the
50 US states. With data on policy instruments collected from
press releases and with data from Google’s mobility reports
for the period of March 9 to August 2, 2020, they used XGB-
boost to predict the transmission of COVID-19 under differ-
ent policy scenarios.With an R2 value of 0.79 for training and
0.76 for testing, the model showed a robust estimation of the
transmission rate as a function of policy instruments. Thus,
various policy instruments have a significant influence on
future transmission. This study concluded that state agencies
could ensemble policy instruments in a structured way for
data-driven decision making. Similarly, Badr et al. [73] stud-
ies the social distancing index based on population mobility
of 25 American counties. Using the mobility data from Tera-
lytics (Zürich, Switzerland), they found a 35-63% reduction
in mobility compared to normal conditions due to restrictions
imposed on mobility. The study also shows a strong correla-
tion between population adherence to strict social distancing
directives and COVID-19 cases reduction in the US.

Soures et al. [49] proposed a new hybrid ML model
comprised of neural network and epidemiology models
(SIRNET) to understand the impact of social distancing
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TABLE 3. Data and ML methods used in past studies on COVID-19 and human mobility.
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(i.e., mobility) on the spread of COVID-19 infections in the
US, Italy, Spain, Germany, France, and South Korea. With
data assembled from multiple sources (e.g., WHO, CDC,
NY Times, US Census, Google, and Apple), they evaluated
COVID-19 situations in different geographic regions. The
results demonstrate that the SIRNET model is able to pre-
dict coronavirus cases by region using mobility information.
They observed that low mobility in a population group has a
significant impact on reducing the COVID-19 cases in this
population. Thus, they suggested keeping mobility at least
below 50% of the nominal mobility in the immediate future
to control the pandemic until herd immunity can be achieved.

Researchers in [53] examined the role of social distancing
measures on COVID-19 transmission rates by integrating
mobility data from Google and Apple, and COVID-19 data
from the European Centre for Disease Prevention and Con-
trol in 26 countries of the world. The transmission rate was
calculated using the susceptible-infected-recovered (SIR)
model. Their Gradient boosted decision tree regression anal-
ysis indicated that mobility changes in retail and recreation
businesses, grocery stores and pharmacies, parks, transit
stations, workplaces, and residential areas due to social dis-
tancing policies explain about 47% variation in the disease
outbreak. Thus, controlling restrictions on people’s atten-
dance and mobility in public places with high density of
people are effective public health policy measures to mitigate
the impacts of the pandemic.

It is now well documented that strict lockdown and con-
finement measures and proper practice of social distancing
are very effective at mitigating the COVID-19 pandemic by
reducing mobility and the gathering of people. However,
evidencemust be used with great care and caution. To demon-
strate this point, we further investigated the impacts of social
distancing practices on human mobility and COVID-19 daily
confirmed cases using the data collected from [72] for the
period of January 1 to December 26, 2020, Fig. 6. As antici-
pated, the results indicate a negative correlation of the social
distancing index with daily trips per person. Intuitively, there
should be a negative correlation between the incidence of
COVID-19 cases and the daily trips per person; however,
at first blush there is no significant correlation to be found.
This emphasizes the criticality of reliable data collected over
time across varied communities, but also the importance of a
modeling framework suitable for the handling of complex,
multiple and possibly non-linear relationships and of the
socio-spatial contexts of individual decisions, social group
dynamics, and public policy elements [74]. Thus, we contend
that further research using ML is fully warranted to reach
strong and conclusive statements.

D. SOCIO-ECONOMIC FACTORS AFFECTING MOBILITY
AND TRAVEL PATTERNS DURING THE COVID-19
PANDEMIC
Besides the severity of the pandemic and related confinement
and lockdownmeasures, other social, economic, and environ-
mental factors may also affect the mobility and travel patterns

FIGURE 6. Impacts of social distancing on mobility and COVID-19
pandemic.

of the population. A study in [52] investigated the factors
that affect human mobility and travel in the US during the
COVID-19 pandemic using OLS regression, ridge regression,
LASSO, and Elastic Netmodeling techniques.With statewide
data from January 1, 2020, to June 13, 2020, and dividing
them into train and test data sets, the study examined that
ridge regression provides superior results with the least error.
However, LASSO and Elastic Net modeling techniques per-
formed better than OLS regression. The results indicate that
the number of daily trips per person has a negative associa-
tion with the number of new cases, social distancing index,
median income, percentage of elderly population, number of
people staying at home, socio-economic status, stay-at-home
order, and domestic travel restrictions. In contrast, the number
of daily trips per person has a positive association with transit
mode share, percentage of Hispanic and African American
population, mandatory statewide mask policy, and driving
mobility index. Finally, using LASSO regression, the study
found that the percentage of the population over 60, social
distancing index, and percentage of the population working
from home have higher impacts on the number of daily trips
per person compared to other covariates.

Another study investigated spatial (e.g., population
density) and aspatial (e.g., socio-economic) factors of coro-
navirus transmission over 401 counties in Germany [50].
The Bayesian Additive Regression Trees (BART) model
demonstrated that higher densities of churches were the most
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important factor for predicting COVID-19 cases due to higher
walkability, interpersonal interactions, higher social con-
nectivity, and community engagement, particularly among
senior and elderly populations. Similarly, long-distance train
stations increase the probability of inter-personal coronavirus
transmissions due to the high density of travelers and their
long-distance interactions. Among the socioeconomic fac-
tors, in-person participation in vote casting was identified as
the strongest predictor of COVID-19 transmission. The study
also noticed that the foreign guests in tourist establishments,
employment density, community centers, beauty salons, etc.,
significantly impacted on COVID-19 transmissions. There-
fore, they suggested implementing social distancing mea-
sures and reduce unnecessary travel to reduce coronavirus
infection.

Researchers in [7] investigated the relationships between
socio-economic characteristics of the people and human
mobility in the context of the COVID-19 pandemic after
collecting geolocated human mobility data from SafeGraph
in Los Angeles, US. Quantifying mobility indices and social
distancing metrics, they classified census blocks into areas
of High, Medium, and Low vulnerability to the COVID-19
pandemic using supervised ML classifiers such as Gradi-
ent Boosting, Support Vector Machines, and Multinomial
Logit models. The results indicated that tree-based classifiers
(i.e., Gradient Boosting) performed well with an accuracy
of 97.4% and area under curve (AUC) score of 98.7% com-
pared to Random Forest (96.8%), Support Vector Machines
(90.5%), and Multinomial Logit models (91.3%). In sub-
stance, the study reported that socially vulnerable popu-
lations, high mobility indices and low social distancing
index increases the vulnerability of the local communities to
COVID-19 infection.

Using the expectation-maximization (EM) algorithm,
the study in [57] reported that the Hawkes process –a model
that simultaneously estimates the intensity of the events and
tracks dynamics of the reproduction number of the virus–has
a good potential to predict COVID-19 transmission with min-
imum MAE and percentage error (PE). It also demonstrated
that the performance of the prediction model increases sub-
stantially when the modeling of disease transmission is inte-
grated with mobility, social distancing measures, and other
socio-demographic covariates (e.g., population, median age,
number of hospitals and ICU beds, percentage of smokers
and diabetic patients, and heart disease mortality). Estimating
Poisson regression, the study mentioned that the reproduc-
tion number is positively associated with mobility changes
in retail/recreation and grocery/pharmacy. In contrast, it is
negatively associated with mobility changes in transit sta-
tions, parks, and residential areas. They also found that the
reproduction number is positively associatedwith higher pop-
ulation density, number of hospitals, and ICU beds. In con-
trast, the reproduction number is negatively associated with
median age, percentage of the population with diabetes, heart
disease, and smoking habits, which implies that people with
high health risks are more cautious and tend to live in areas

with fewer coronavirus cases and population density, which
protects them from getting infected.

The above discussion reveals the facts that in addition to
COVID-19 related factors, socioeconomic situations of the
people influence human mobility. For example, disadvan-
taged segments of society (e.g., elderly, people with heart
disease) voluntarily limit their movement due to their concern
and fear of exposure and infection. On the other hand, people
who live in areas with more health care facilities would be
more comfortable to travel around due to their preparedness
to control any unwanted situations. Thus, socio-economic,
health and environmental factors have a significant impact on
mobility and the COVID-19 pandemic.

E. COVID-19 INTERACTIVE PLATFORMS AND
DASHBOARDS
A number of platforms have been developed to provide
real-time COVID-19 related information such as new cases,
deaths, testing, hospitalization, contact tracing, COVID-19
prediction, lockdown and confinement measures, impacts of
COVID-19 on daily mobility, economy, and socioeconomic
characteristics of people, etc. For example, Zhang et al.
provided a COVID-19 impact analysis platform to under-
stand the daily impact of COVID-19 on mobility, economy,
and society [62], [72]. The proposed interactive model uses
location data of mobile devices, COVID-19 cases data, and
population census data to compute the social distancing index
of the US states or counties. The computed social distanc-
ing index provides an estimate of how likely residents of
a state or a county obey government directives on social
distancing and hence helps to reduce the spread of the dis-
ease in that region. Location data representing the movement
of humans and vehicles are used in different deep learning
algorithms to impute or infer other mobility-related data such
as travel mode (air, car, bus, walking, etc.), trip length, trip
purpose, points-of-interest visited (restaurants, shops), and
socio-demographics of the travelers (income, gender, race,
etc.). The imputation shows more than 90% accuracy. The
computational algorithms are also validated based on a vari-
ety of independent datasets such as the National Household
Travel Survey and the American Community Survey. The
resultant datasets are updated daily and publicly available.

The Johns Hopkins Coronavirus Resource Center (CRC),
through their interactive platform [75] continuously updates
the sources of COVID-19 data and expert guidance. To inform
the public, policy makers, and healthcare professionals
about the COVID-19 pandemic and to respond accordingly,
the platform aggregates and analyzes the COVID-19 cases,
testing, contact tracing, and vaccine efforts. The COVID-19
project model of the Institute for Health Metrics and Eval-
uation (IHME) [76] is perhaps the most visited COVID-19
prediction model in the US. In response to requests from the
University of Washington School of Medicine and other US
hospital systems and state governments, IHME’s COVID-19
projections were developed to determine when COVID-19
would overwhelm their ability to care for patients. IHME’s
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COVID-19 forecast model shows the daily demand for hos-
pital services, daily and cumulative deaths due to COVID-19,
rates of infection and testing, and the impact of social distanc-
ing measures organized by county and by state.

These interactive platforms are helping policy makers,
health professionals, and researchers to understand the inter-
play between different factors of COVID-19 spread and
undertake appropriate policy measures to control pandemic
situations and improve the quality of lives.

F. APPLICATIONS OF ICT AND ML TECHNIQUES FOR
COVID-19 SURVEILLANCE
Information and communication technologies (ICTs) are
popularly being used in different places around the world to
monitor COVID-19 situations (Table 3). To facilitate human
movement during the pandemic, some studies have explored
possible options for transferring people safely from origin to
destination. For example, Darsena et al. [77] proposed a Safe
and Reliable Public Transportation Systems (SALUTARY)
system to proactively tackle crowding situations in public
transportation (PT) during the COVID-19 pandemic using the
technologies of the Internet of Things (IoT). The system is
proposed for adoption in the various segments of the pub-
lic transportation system (buses/trams/trains, railway/subway
stations, and bus stops) to (i) monitor and predict crowding
events, (ii) adapt public transport system operations in real
time (i.e., modifying service frequency, timetables, routes,
and so on), and (iii) inform the users by electronic displays
installed in correspondence of the bus stops/stations and/or
by mobile transport applications. Another study used a ML
driven intelligent approach to trace daily train travelers in
different age cohorts of 16-59 years and over 60 (i.e., vulner-
able age-group) to recommend certain times and routes for
safe traveling [78]. The study utilized ICTs, including WiFi,
RFID, Bluetooth, and UWB (Ultra-WideBand). The LUO
(LondonUnderground andOverground) Network dataset was
used and various ML algorithms were compared to correctly
classify different age groups of travelers. The results of the
models indicate that the Support Vector Machine (SVM)
performs better to predict the mobility of travelers with an
accuracy of up to 86.43% and 81.96% in the 16-59 and over
60 age groups, respectively.

Researchers in [55] estimated the changes in people
mobility during the pandemic and local policy measures
using a Spatio-temporal Generative Adversarial Network
(COVID-GAN), a conditional generative neural network
approach. They collected and integrated data from multiple
sources (e.g., SafeGraph, US Census, CDC, and local gov-
ernment) for the city of Boston, US to provide multi-view
insights in estimating mobility changes. The experimen-
tal results show that COVID-GAN sufficiently mimics
real-world scenarios and performs reasonably well on a spa-
tially unseen region (i.e., regions not included in the train-
ing dataset) that is relatively small and is still adjacent to
the spatially seen data. Similarly, this method can maintain
a high quality to predict human mobility for the unseen

periods, which is important to evaluate the effects of ongoing
COVID-19 related policies.

Ahmed et al. [56] aimed at detecting violations of social
distancing measures using a deep learning-based social dis-
tancing monitoring framework using the YOLOv3 object
recognition paradigm in video sequences. Moreover, this
approach used the transfer-learningmethod to enhancemodel
performance. The experiment results show that the developed
framework efficiently identifies the people who walk too
close and violate social distancing measures with an accuracy
of 92% and 98% without and with transfer learning, respec-
tively. Themodel has a tracking accuracy of 95%. Thus, video
surveillance using emerging technologies (e.g., Bluetooth,
smartphones, global positioning systems, computer vision,
ML, and deep learning) are very effective and provide critical
solutions for enforcing social distancing measures during
emergencies. Research has shown that applications of ICT
andML-based approaches are crucial to direct people on how
to travel during this pandemic situation.

IV. URBAN AIR QUALITY
Besides mitigating COVID-19 transmission and associated
risks, confinement and lockdown measures yield some addi-
tional health benefits by inducing a drop in air pollutants
[79]–[83]. The impacts of urban forms, socio-economic fac-
tors of people, health factors, institutional aspects, lockdown
measures for COVID-19, and human mobility on urban air
quality are integrated in Fig. 3 in the conceptual framework
(Section II).

Researchers estimated that the emission of PM2.5, SO2,
and NO2 was reduced by 2.5 Gt, 0.6 Mt, and 5.1 Mt,
respectively in the world from the start of the pandemic
through May 2020 [82]. Many studies empirically investi-
gated the impacts of COVID-19 related confinement and
lockdown measures on air quality in urban areas specifi-
cally (Table 4). These studies have investigated the impact
of control measures on the prevalence of a wide range of
air pollutants (Table 5). The main results of these studies
are reported in Table 6. Some of these recent studies have
found that social distancing measures can improve air quality
significantly [84]–[86].

Researchers estimated NO2 reduction of 22.8 µg/m3 in
Wuhan and 12.9 µg/m3 in 367 cities of China [87]. It is also
reported that PM2.5 was reduced by 1.4 µg/m3 in Wuhan
and 18.9 µg/m3 across 367 cities of China. NASA’s scien-
tists reported a 30% reduction in NO2 emissions in Cen-
tral China [88]. The same study also estimated 25% and
6% reduction in CO2 emissions in China and worldwide,
respectively. About 50% reduction of PM2.5 and PM10 were
observed in New Delhi, India after the implementation of
lockdown measures [89] in March 2020. Another study in
India [80] reported reduction in PM10, PM2.5, NO2 and SO2
concentration in Delhi (55%, 49%, 60%, and 19%, respec-
tively) andMumbai (44%, 37%, 78% and 39%, respectively).
A 36% and a 51% reduction in PM2.5 and NO2 concentra-
tions, respectively, were noted shortly after the shut down of
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TABLE 4. Geographical context and objectives of past studies on COVID-19 and air quality.

TABLE 5. Pollutants studied in different studies.

TABLE 6. Changes in air pollutants induced by COVID-19 related lockdown measures (’-’ sign indicates a decrease and ’+’ sign indicates an increase in
pollutants).

New York City [90]. Quito, Ecuador, also reported 5.6 times
and 4.8 times lower concentration of NO2 in 2020 com-
pared to 2018 and 2019, respectively [91]. Another study
from South America reported a drastic reductions in the

concentrations of NO (up to 77.3%), NO2 (up to 54.3%),
and CO (up to 64.8%) in the State of São Paulo, Brazil [92].
Therefore, it is evident from recent studies that urban air
quality improved substantially due to citywide lockdown
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measures and travel cutbacks from local populations and
businesses.

The reduction in criteria pollutants in the atmosphere indi-
rectly saved human lives. Researchers in [88] mentioned that
improved air quality during the quarantine period avoided a
total of 8,911 NO2-related deaths in China (i.e., about 6% of
normal deaths in China). Another study [93] estimated that
improved air quality has saved at least 19% of premature
deaths because of regular respiratory illness and 11% year
of life lost. Moreover, a number of studies also reported an
increase in O3 due to the reduction of other pollutants (i.e.,
NO2, PM2.5) [91], [92], [94]. For example, researchers in [92]
estimated a 30% increase in ozone concentration in the urban
areas of the State of São Paulo, Brazil. Despite a significant
decrease in the concentration of primary pollutants (i.e., SO2
5-28%, NO2 1-33%, CO 5-41%, PM10 1.4-30%), the con-
centration of O3 increased by 0.5-103% in Iran [94]. Thus,
improving air quality has associated benefits which points to
the need to undertake an integrated policy option to reduce
air pollution in the urban areas to protect public health.

Fig. 7 illustrates daily mean air quality changes
in 2020 compared to 2019 in North America and Europe.
The changes in five criteria pollutants in major cities are
mapped to understand the overall impacts of lockdown mea-
sures, travel cutbacks, and pause in industrial production on
air quality. Many recent studies confirmed that air quality
improved due to these factors overall. However, as Fig. 7 indi-
cates, quality improvement may vary across pollutants and
geographic locations. The concentration of NO2 decreased
significantly in most of the cities in Europe and North Amer-
ica. It is observed that the pandemic seems to have a limited
and no impact on SO2 concentration. An opposite scenario
can be observed for O3 concentration which is increased
significantly in most cities. This is probably because of the
fact that O3 formation depends on the availability of other
pollutants. The concentration of particulate matters mostly
decreased in cities of Europe, whereas it is increased in most
of the mid-eastern cities in the USA. Although, there could
be many factors associated with air quality, Fig. 7 indicates
the impact of the level of various aspects of the pandemic,
including lockdown measures. Europe has been under much
stricter lockdown measures compared to North America.
As a result, most of the criteria pollutants are shown to have
decreased in Europe.

A. IMPACT ON CONCENTRATION OF PARTICULATE
MATTERS (PM)
Particulate Matters (PM), composed of solids and gases, are
largely generated during the burning of fossil fuels and woods
in transportation, manufacturing, and in power plants [114].
Due to lockdown measures, human mobility is reduced,
and the majority of industries are closed; hence, emissions
of PM have been reduced substantially. Some researchers
have investigated the level of PM in the air during lock-
down periods and compared the results to pre-COVID-19
situations to assess the changes in air quality. For example,

Mallik et al. [96] estimated the concentration of PM2.5 in the
city of Kanpur, India for three different lockdown phases: pre,
during, and post lockdown conditions in relation to the pan-
demic. They used four different ML approaches to estimate
PM2.5 from remote sensing-based MODIS Aerosol Optical
Depth (AOD) data and meteorological parameters, including
temperature, rainfall, relative humidity, wind speed, and mix-
ing height. A hybrid ML approach that combines ANN and
Multiple Linear Regression (MLR) shows the highest per-
formance for the estimation of PM2.5. The hybrid approach
outperformed (R2

= 0.96) Linear Regression (LR) (R2
=

0.016), MLR (R2
= 0.246) and ANN (R2

= 0.895) models.
The authors compared the estimated PM2.5 of this year with
the previous year and reported 4% and 47% reduction in
PM2.5 during the lockdown and post-lockdown condition,
respectively. From the analysis, they concluded that PM2.5 is
reduced because of the reduction in emissions from industries
and transport vehicles.

The IQAir [115] analyzed PM2.5 levels in 10 major and
severely affected cities in the world by observing three
weeks of the strictest lockdown conditions in-between Febru-
ary and April in 2020 (Fig. 9). The figure indicates that
9 out of 10 global cities have experienced a reduction in
PM2.5 during the mentioned period in 2020 compared to
2019. The report also mentioned that the cities with higher
levels of PM2.5 concentration achieved the most substantial
reductions (e.g., Delhi, Seoul, Wuhan) due to restriction on
vehicular movement, closure of the educational institutions,
industries, and workplaces, and shutdown of all non-essential
businesses. In contrast, Rome showed a 30% increase in
PM2.5 concentration due to a higher reliance on residential
heating systems, and the shift away from public transporta-
tion to private cars.

Simulating four hypothetical scenarios (i.e., 10%, 30%,
70%, and 90% of lockdown), Tadano et al. [103] predicted
air pollution levels (PM2.5, and PM10) in São Paulo, Brazil.
Various data, including the daily number of COVID-19 cases,
partial lockdown level, and meteorological variables, were
feed into four ANN models (Multilayer Perceptron, Radial
basis function, Extreme Learning Machines, Echo State Net-
works) to simulate pollutant levels. The result shows that the
Multilayer Perceptron (MLP) outperformed other ANNmod-
els. Themodel results reported a decrease in the concentration
of PM2.5, and PM10. It is also evident that there is a negative
correlation between lockdown levels and air pollutants (i.e.,
a higher level of lockdown measures reduces the amount of
PM in the air to a greater extent).

Grabekka et al. [93] has investigated the effect of lock-
down on NO2 because of the dramatic decrease in mobility
and economic activities in Lombardy, Italy. For that pur-
pose, they built a synthetic counterfactual estimation of air
quality based on meteorological variables using the Extreme
Gradient Boosting Regressor. The model was trained on
atmospheric data between 2012 and 2019 from 227 weather
stations, where meteorological variables are the predictor
variables and air qualities are the predicted variables. Like
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FIGURE 7. Daily mean air quality change in 2020 compared to 2019 in the US and Europe. Data source: EPA and World Air Quality Index Project,
available at [95].

other studies, they also considered calendar variables such as
the day of the year to capture the trend over time. Unlike other
studies, they utilized a ratio between PM2.5 and PM10 as an

additional predictor variable to avoid the impact of the pollu-
tants transported from a long distance, such as mass dust from
the Caspian Sea. The correlation value over 0.87 between
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observed and predicted values before lockdown indicates
the strength of the model. The result shows that lockdown
reduced the concentration of PM2.5 and NO2 by 3.84 µg/m3

(16%) and 10.85 µg/m3 (33%), respectively.
Some other studies also reported the role of lockdown

measures in the reduction of PM2.5 concentration in the
atmosphere [111], [112]. A study estimated a reduction of
PM2.5 by 7% in European countries [109]. Similarly, another
study shows an average reduction of 14.2% in PM10 com-
pared to estimated concentration in 2020 and 11% reduction
compared to the historical mean value between 2014 and
2019 [97]. In a developing country context, a study reported
a 26% to 54.2% reduction in the level of PM2.5 concen-
tration during full and partial lockdown scenario in Dhaka,
Bangladesh [102].

B. IMPACTS ON THE CONCENTRATION OF NITROGEN
OXIDES (NOx)
Themain source of nitrogen oxides (i.e., NO, NO2) is burning
of fossil fuel in the transportation, industries, and power
plants [114]. These highly reactive gases have detrimental
effects on public health by affecting the respiratory systems of
people, besides broader environmental consequences. Many
studies in different geographical contexts have reported a
reduction in the concentration of nitrogen oxides during the
COVID-19 lockdown periods due to the limited mobility of
people and the closure of workplaces and industries. Change
in traffic emission during lockdown played a major role in the
substantial reduction in NO2 in six megacities of China [112].
Random forest learning-based models reported a reduction of
ambient NO2 concentration in the range of 36-53% during
a four-month (January to April 2020) lockdown due to the
formation of secondary aerosols, which enhanced the oxidiz-
ing capacity of the atmosphere. Subsequent lifting of level-1
control action caused NO2 to drop below 10% in late April.
Petetin et al. [99] estimated the business-as-usual NO2

mixing ratio in more than 50 provinces and islands across
Spain and compared it with observed hourly NO2 con-
centration to evaluate the impact of lockdown measures
in March 2020. A Gradient Boosting ML algorithm was
trained on the NO2 concentration from January 1 to 23rd
April 2020 and meteorological data including temperature,
pressure, wind speed, cloud cover, solar radiation, ultra vio-
let radiation, and calendar variables. The model shows reli-
able performance based on the model uncertainty assessment
where overall bias, root mean square error, and correlation
are +4%, 29%, and 0.86, respectively. The result shows an
overall 50% reduction in NO2 due to a reduction in road and
air transportation during lockdown periods. Using a similar
ML method, a study [113] estimated the reduction in NO2
emission to be 23% to 43% in 100 European cities. They
also mentioned that the cities with strict lockdown measures
have experienced a stronger reduction in NO2. Another study
in a similar context (i.e., city of Portici, Italy) [111] used
multilinear regression (MLR) model and a shallow neural
network (SNN) model to monitor air quality with the help

of IoT intelligent multisensor devices during phase 2 of the
pandemic. Results suggested that due to the reduction of
mobility, particularly from car travel during the lockdown
period, the concentration of NO2 has dropped significantly.

The study in [109] used gradient boosting machine (GBM)
models to quantify the diminution of primary pollutants from
the energy industry (e.g., power plants, heat plants), manufac-
turing industry, surface and air transportation in 30 European
countries during the COVID-19 lockdowns. Data collected
from different sources fromFebruary 21 toApril 26, 2020 and
historical data of the previous 5 years (2015-2019) during
the same time period to assess the level of pollutants in the
air. The results indicate that severe lockdown at the EU-30
level countries caused average emission reduction of NOx,
Non-methane volatile organic compounds (NMVOC), and
SOx by 33%, 8%, and 7%, respectively. However, the steepest
reduction in NOx (50%) can be imputed to the closure of
the transportation sector, which is responsible for about 85%
reduction in all pollutants overall. It is also evident that the
drop of NO2 reached up to 58% in the urban areas, whereas it
was only 44% in rural areas; the average contribution of the
transportation sector was 86% and 96%, respectively.

Another approach to investigate the impact of lockdown
measures on air quality is to estimate air pollutants for
2020 based on the trend of previous years and to compare
it with the true values of these pollutants. This approach
generates a synthetic estimate of what air quality would
have been without a lockdown effect based on historical
data. Lovric et al. [97] investigated the lockdown effect
on air quality at five monitoring stations in Graz, Austria.
Four different pollutants (NO2,O3,PM10, and Ox) were
estimated based on meteorological data series, including air
temperature, precipitation, wind speed, wind direction, and
air pressure. The Random Forest algorithm was trained by
the historical meteorological variables and pollutants data
between 2014 and 2019. Based on the relationship between
meteorological variables and pollutants level, air quality was
estimated for the lockdown period. Finally, the estimated
values were compared with observed values at the five mon-
itoring stations to evaluate the impact of lockdown on air
quality. The results show an average reduction of 36.9% in
NO2 due to the lockdown effect. Authors also compared the
air quality of 2020 with the historical mean between 2014 and
2019, which also indicates a 38.1% reduction in NO2.
Keller et al. [98] developed a bias-corrected model (BCM)

for the NASA global atmospheric composition model
(GEOS-CF) using the XGBoost ML algorithm. They utilized
this BCM model to estimate NO2 from eight meteorologi-
cal parameters, including surface wind components, surface
temperature, relative humidity, cloud coverage, precipitation,
pressure, and planetary boundary layer. The ML predictor
was trained on 2018-2019 data to predict the model bias for
the observation sites in 2020 to adjust the predicted concen-
trations from the GEOS-CFmodel. This study estimated NO2
at 5756 observation sites in 46 countries across the globe
between January to June 2020. They found that on average
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NO2 concentrations were 18% lower than the business-as-
usual level.

Similarly, Grabekka et al. [93] found that the lockdown
reduced the concentration of NO2 by 10.85 µg/m3 (33%).
A 20.4% to 55.5% reduction in NO2 during full and partial
lockdown scenario, respectively, compared to the pre-COVID
situation, was also reported in Dhaka, Bangladesh [102].
Thus, it is evidenced that the concentration of NOx has
reduced significantly in urban areas due to city-wide and
countrywide lockdown measures and closure of transporta-
tion and workplaces [103].

C. IMPACTS ON THE CONCENTRATION OF COx

Similar to nitrogen oxides, carbon oxides (i.e., CO, CO2) are
also released by burning fossil fuel by vehicles and indus-
tries, and by biomass [106], [114]. These colorless gases can
negatively affect human health when present at a high level
of concentration in the air. However, studies have found that
the level of carbon emission dropped significantly during the
COVID-19 pandemic [103], [116]. These studies empirically
investigated changes in carbon emission during the lock-
down periods. For example, a study in Dhaka, Bangladesh,
[102] investigated the impact of different lockdown scenarios
on air quality and on COVID-19 transmission using data
fromweather monitoring stations. Using generalized additive
models (GAMs), wavelet coherence, and random forest (RF)
models, this study found a 8.8% to 23.5% reduction in CO
concentrations during full and partial lockdown scenarios,
respectively, compared to the pre-COVID situation. Simi-
larly, this study reported a 17.5% to 48.1% reduction in
SO2 during full and partial lockdown scenarios, respectively,
compared to the pre-COVID situation.

After collecting data on energy, human activities, and pol-
icy measures, researchers in [117] estimated daily changes in
carbon emissions in 2020 compared to 2019 for three-level
of confinement (low, medium, and high) and for six sectors
of the economy (e.g., power, industry, surface transportation,
public building and commerce, residential, and aviation).
Fig. 8 shows the total changes in CO2 emission in the world
as a whole, as well as the changes in the six economic
sectors under three confinement scenarios for the period of
01 January 2020 to 31 December 2020. The figure demon-
strates a positive association between COVID-19 related
confinement and changes in CO2 emission (i.e., a higher
level of confinement reduces further CO2 emissions from
all economic sectors). The peak reduction in CO2 emissions
is evidenced in March and April due to the severity of the
pandemic, substantial mobility reduction, and associated fear
and anxiety. However, the reduction in CO2 emissions from
transportation and industry is relatively greater than other
sectors due to strict restrictions on mobility, closure of work-
places and industries.

Researchers in [106] estimated the impacts of COVID-19
lockdown measures on black carbon (BC) emissions in
urban and urban-industry areas, suburbs, and rural areas
of Hangzhou, China using a multiwavelength Aethalometer

FIGURE 8. Longitudinal changes in CO2 emissions in the world under
confinement scenarios.

model. Analyzing data collected from nine observation sites,
the study showed a city-wide 44% reduction in BC from
2.30 to 1.29 µg/m3 due to reduction of vehicle emissions
in the urban areas and biomass burning in the rural areas
during the COVID-19 lockdown periods. More precisely, this
study reported 47%, 49%, 41%, and 38% BC emission in
urban, urban industrial, suburban, and rural areas, respec-
tively. Using a similar method, researchers in [118] found
reductions of 78%, 67%, 53%, 59%, 74%, and 66% in BC
during Lockdown-1 (March 25- April 14, 2020), Lockdown-2
(April 15- May 3, 2020), Lockdown-3 (May 4-17, 2020),
Lockdown-4 (May 18-31, 2020), Unlock-1 (June 2020), and
Unlock-2 (July 2020) situations, respectively compared to
the pre-Lockdown period (Feb 18- March 24, 2020). Using
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FIGURE 9. Changes in PM2.5 levels in 2020 compared to 2019 in 10 major
global cities during COVID-19 related lockdown periods between
February and April 2020 [115].

Concentration Weighted Trajectories (CWT) analysis, this
study concluded that local sources (e.g., fossil fuel, biomass
burning) were primarily responsible for BC concentration
over Delhi, India.

Thus, the closure of public transport, workplaces, and
industry due to government-mandated lockdown measures
significantly reduces carbon emission by decreasing the burn-
ing of fossil fuel, solid substances, and biomass in urban and
rural areas [119], [120].

D. IMPACTS ON THE CONCENTRATION OF O3
Unlike the other pollutants, most of the studies have men-
tioned that the concentration of O3 has increased dramatically
during the COVID-19 lockdown periods [103], [121]–[123].
Experts mentioned that the reduction in traffic emission is
largely responsible for increasing O3 concentrations [112].
For instance, researchers in [97] observed that O3 concen-
tration increased significantly between 11.6% to 33.8% dur-
ing the lockdown period in Graz, Austria, which can be
explained by the reduction of the NO − O3 titration cycle
when NOx emission was low during the lockdown. Similarly,
O3 concentration increased by up to 50% in some locations
of the world where NO2 was also reduced significantly [98].
However, the response of O3 is nonlinear to the reduction of
NO2. Some cities such as Beijing andMadrid show very little
difference in O3, while having declines in NO2 comparable
with other cities. The study in Dhaka, Bangladesh [102] also
observed a 9.7% to 31% reduction in O3 concentration during
full and partial lockdown scenarios, respectively, compared
to the pre-COVID situation. Thus, it can be concluded that
the overall level of O3 increased significantly during the
lockdown periods in many parts of the world.

E. IMPACTS OF AIR POLLUTANTS ON COVID-19
TRANSMISSION AND DEATH RATE
According to public health researchers, indoor and outdoor
air quality significantly affects human health [124]–[126].
Evidence indicates that prolonged exposure to air pollution
could increase the risk of viral infections, and respiratory

illness [108]. Moreover, small particles in the air may facil-
itate viral spread like coronavirus. Thus, the scientific com-
munity has grown more interested in learning the effect of air
quality on COVID-19 transmission. At the beginning of the
COVID-19 pandemic, many scientists investigated the role
of weather variables (e.g., temperature, pressure, precipita-
tion, humidity) and air quality on the virus transmission rate.
However, the scientist community now believes that weather
conditions may have very little or no effect on virus transmis-
sion. Many studies have already investigated the relationship
between local air quality and COVID-19 infection and death
rate.

A study [104] explored the relationship between particulate
matter (PM2.5 and PM10) and COVID-19 death using ANN
for three cities in France. They found different thresholds
of the concentration of particulate matter responsible for
fatality in different cities, for instance 17.4 µg/m3 PM2.5
and 29.6 µg/m3 PM10 for Paris. The results indicate that an
increase in PM10 concentration beyond 29.6 µg/m3 could
generate a 63.2% increase in mortality. Similarly, any value
above 20.6 µg/m3 in PM10 would generate an increase in
deaths of 56.12% in Lyon, France. Similarly, a study in the
Lima metropolitan area, Peru investigated the relationship
between the COVID-19 infection rate and major air pollu-
tants (CO, NO2, SO2, PM2.5, and PM10) [100]. The study
used Reduced-spacedGaussian Process Regression andANN
models. The result indicates that the industrial area shows
a higher number of infections compared to other land use
zones. The industrial zone features the highest air pollution
because of the high concentration of NO2, PM2.5, and PM10.

Using various ML techniques, including Decision Trees,
Linear Regression, and Random Forest, researchers in [101]
computed the correlation between air pollutants and
COVID-19 fatality in Delhi, India. The result shows that
COVID-19 fatality is positively correlated with a few air
pollutants such as O3, SO2, and NH3. Moreover, results
from three different ML algorithms indicate that NH3, NO2,
and PM10 are the important factors of COVID-19 related
fatalities. Similar to other studies around the world, this study
also shows that there is a significant increase in ozone and
toluene concentration in the air because of the lockdown
measures. Thus, an increase in surface ozone may augment
the fatality rates. A study in [108] based on the Random
Forest algorithm investigated the impact of air pollution,
rather than direct person-to-person contamination, on the
spread of SARS-CoV-2 in Italy. Interestingly, compared to
lifestyle or socio-economic factors, air quality played the
most significant role in pandemic diffusion and severity.
A 5-10% increase in air pollution in Italy may cause an addi-
tional rise of 21-32% in the COVID-19 toll, having 4-14%
more deaths. These findings were achieved by analyzing
epidemiological data on COVID-19 positivity, mortality, and
air quality index of 20 Italian regions and 99 Italian provinces
from 2015 to 2019. Furthermore, it is estimated that about
70% of COVID-19 deaths nationwide might be due to emis-
sions from industries, farms, and road traffic.
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There is a unidirectional causal relationship between pollu-
tion and economic growth. In 25major Indian cities,Mele and
Magazzino [110] investigated the relationships between eco-
nomic growth, pollution emissions, and COVID-19 related
deaths using time series analysis and ML based complex
causality algorithm (D2C). Time-series econometric analy-
sis indicated that there is a strong unidirectional correlation
between economic growth and concentration of PM2.5, CO2,
and NO2. The ML algorithm confirmed a causal relation-
ship between the concentration of PM2.5, CO2, NO2, and
COVID-19 deaths. Thus, air pollutants have a direct relation-
ship with the COVID-19 pandemic-related death, with the
largest influence from PM2.5. Prolonged exposure to PM2.5
causes acute health problems (e.g., asthma, cough, loss of car-
diac or lung capacity), which results in fatalities. The results
are consistent with other studies conducted in the US [127],
where the researchers found that a 1 µg/m3 increase in
PM2.5 concentration causes an increase in the mortality rate
by 15%. Thus, exposure to PM2.5 aggravates the symptoms
of COVID-19 with heightened risks of mortality.

The above discussion confirms that air pollution has a sig-
nificant impact on the diffusion of the COVID-19 pandemic.
However, the reduction of air pollutants during COVID-19
related lockdown has had a mitigating effect, by substantially
increasing air quality, which in turn had the effect of curbing
the severity of the pandemic.

F. AI AND ML TOOLS IN AIR POLLUTANTS MONITORING
Nowadays,ML techniques are used extensively for their com-
putational benefits and intelligence in ‘big-data’ analytics of
air pollutants monitoring. Supervised ML algorithms predict
or classify data based on existing labeled data (Table 7).
ML algorithms are routinely used to estimate the business-as-
usual concentration of criteria pollutants using large historical
datasets. A number of studies also use ML algorithms to
discover the relationship between air quality and COVID-19
related death, including all its nuances. Their distinctive
advantage rests with the capability to handle large datasets
and with their predictive reliability.

Researchers in [111] used Raspberry Pi 3B+ in the IoT
stationary architecture to build an air quality monitoring
system. Their IoT-based model could be exploited to get a
deeper understanding of the influence of air pollution on the
pandemic. It can also be helpful to anticipate the increased
susceptibility of individuals due to exposure and eventually
to predict new outbreaks. Recently, Cole et al. [107] have
developed a meteorological normalization technique based
on the random forest algorithm in combination with the aug-
mented synthetic control method to quantify the impact of
COVID-19 lockdown on air pollution and public health in
Wuhan, China. Investigating the hourly data of four pollu-
tants (SO2,NO2,CO,PM10) in 30 cities of China between
January 2013 and February 2020, the model reported a 63%
reduction (a drop of 24 µg/m3) of NO2 with respect to
pre-lockdown levels. Even though the study found no sig-
nificant impact of lockdown on SO2 or CO, it indicated the

reduction of NO2 could have prevented a total of 3,368 deaths
in the City of Wuhan and 10,822 deaths in the whole of P.R.
China.

Mirri et al. (2020) [105] used eight different ML models
to predict the possibility of a resurgence (second wave) of
the COVID-19 pandemic in all nine provinces of Emilia-
Romagna, Italy for the period of September–December 2020;
Emilia-Romagna was one of the most severely afflicted
regions during the first phase of the pandemic from Febru-
ary to April 2020. They trained the models with data on
COVID-19 confirmed cases from February to July 2020, and
the daily measurements of PM2.5, PM10 and NO2 in the peri-
ods of September–December 2017/2018/2019. The results
from the models demonstrated that the gradient boosting
model performs better, with an accuracy of 90%, to predict
the possibility of a second wave of the pandemic. Conducting
a sensitivity analysis, the study commented that the use of per-
sonal protective measures has a significant impact to down-
grade the likelihood of a second wave in the nine provinces
of Emilia-Romagna.

In the light of the potential benefits of analysis on com-
plex data structures with high computational efficiency, many
studies have used different ML techniques to monitor air
quality and explore the effects of air pollutants on disease
transmission. One important question arising here is that of
the motivation for using ML to predict air quality rather than
statistical or econometric models. The answer may lie in the
fact that these studies are investigating the effect of lockdown
measures on air quality in the current situation instead of
the simple comparison between the current value and his-
torical values. Since air quality is significantly influenced
by meteorological factors, a simple statistical or econometric
model may not capture the true effect of lockdown on the
concentration of air pollutants. Thus, machine learning to
estimate air quality considering all these factors may provide
a better understanding of the lockdown and confinement
effects [97].

V. SPATIO-TEMPORAL IMPACTS OF LOCKDOWN
MEASURES ON COVID-19 DIFFUSION, HUMAN
MOBILITY, AND AIR QUALITY
Transmission of the coronavirus was very fast, with moving
its epicenter from Wuhan, China to Italy and Europe in late
February 2020, and to New York, USA in late March 2020
[129], [130]. However, government policies, nonpharmaceu-
tical interventions and control measures were very effec-
tive to contain the outbreak in many countries (e.g., China,
Singapore), while some countries (e.g., USA, India, Brazil)
have experienced severe repeated outbreaks due to inadequate
and delayed responses. Researchers have claimed that space
and time are strongly correlated with the outbreak of the
COVID-19 pandemic and these dimensions are now recog-
nized as critical factors for determining a public health crisis
during the pandemic [131]–[133].

Some studies have conducted a spatio-temporally explicit
analysis to understand the dynamics of COVID-19 diffusion
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TABLE 7. Data and ML methods used in studies on COVID-19 and air quality.
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over geographic regions and across time. Hass and Jokar
Arsanjani [134] explored the spreading of COVID-19 in
Europe and associated geographical factors that contribute to
virus diffusion using a data-drivenmethod. Applying a spatial
autocorrelation approach, this study identified countries in
western and central Europe (e.g., Spain, France, Belgium,
Netherlands, Czech Republic) as the hot spots of the pan-
demic, and areas (e.g., Norway, Finland, Iceland, Greece, and
Cyprus) that are isolated and less populated as statistical cold
spots. The study also conducted emerging hot spot analysis
using space-time autocorrelation to locate the hot and cold
spots of COVID-19 over space and time (i.e., howmany times
a region becomes hot or cold spot). Applying 90% and 75%
time interval settings, the study observed that most of the
countries showed no significant changes. At the 90% time
interval, new hot spots are found in parts of Italy, Austria,
Croatia, and Poland, which were cold spots at an earlier time.
Some parts of Ireland and Scotland are found to be oscillat-
ing cold spots (i.e., cold spot but also been hot spot once).
In contrast, some parts of Finland are found to be intensifying
cold spots due to the low infection rate. This emerging hot
spot technique is very helpful for the policymakers to decide
which control measures need to make tighter or to relax and
where to intervene.

Researchers in [135] evaluated the temporal and spa-
tial diffusion of COVID-19 in China from January to
October 2020 using a spatio-temporal scanning analysis
framework. The results showed a relatively stable spreading
of COVID-19 in China over time. However, a higher rate of
incidence was recorded in the initial phase of the pandemic
from January to March 2020 with the highest risk in Hubei
Province, compared to other regions. Using Moran’s I index,
the study found a significant spatial dependence of confirmed
cases and detected significant clustering of COVID-19. The
pandemic is relatively concentrated in Wuhan and adjacent
areas (e.g., Xinyang, Lu’an, Xuanzhou, Changde), and other
economically developed cities near Shanghai and Beijing.
They commented that the study findings are helpful for
city authorities to take effective COVID-19 prevention and
control measures.

Researchers in [136] conducted a spatio-temporal diffu-
sion of COVID-19 using hot spot analysis and space-time
cube (STC) in East Java, Indonesia. The results show that
diffusion of COVID-19 was concentrated in Surabaya and
metropolitan areas and then spread to suburban areas and
other cities through oscillating patterns (i.e., new cases follow
the recovery from previous cases) and sporadic hot spots
over the four months from mid-March to June 2020. Monthly
hot spot analysis demonstrates that many positive cases are
found close to areas with high road density, commercial
and business activities, financial institutions, transportation,
and entertainment, and restaurants. The study argued that
spatio-temporal analysis is crucial to provide some insights
(e.g., proximity factors) on the dissemination of the disease,
which helps policymakers to adopt efficient policy measures
to control the pandemic.

Some studies have also investigated the spatio-temporal
impacts of COVID-19 and lockdown measures on human
mobility to understand the dynamics of mobility changes
over space and time. Researchers in [130] assessed the
spatio-temporal changes in human mobility to understand
the impacts of control measures in five global cities (i.e.,
New York City, Tokyo, Rome, New Delhi, and Wuhan).
Analyzing periodical multispectral satellite imagery (Novem-
ber 2019 to September 2020), the study detects traffic den-
sity using a deep learning-based vehicle detection technique
(i.e., morphology-based vehicle detection). The experimental
results show that traffic density has decreased significantly
due to COVID-19 and associated policy measures, which
ensure social distancing practices among individuals. These
control measures have also affected micro-mobility services
over space and time (i.e., an overall reduction in trips during
the lockdown period, higher reduction on weekdays partic-
ularly at peak periods compared to weekends) as indicated
in [137].

Using night light data as primary source of evidence,
Liu et al. [138] investigated spatial and temporal changes in
the impacts of COVID-19 on human lives before and dur-
ing the lockdown periods. Observing variation in night light
radiance, the study found a higher number of pixels with
night light detection in residential areas due to increased
human activities during the lockdown periods from January to
March 2020 compared to 2019. In contrast, a lower number
of pixels with night light detection was observed in the com-
mercial areas, which indicates the transfer of human activities
from commercial and entertainment centers to residential
areas due to the adopted control policies for COVID-19
(e.g., stay-at-home, work-from-home). However, the number
of pixels with night light detection remained the same in the
geographic areas of transportation and public facilities. Thus,
COVID-19 and associated lockdown measures have a signif-
icant spatio-temporal impact on people and the environment,
and assessment of these impacts could lead to an early policy
implementation to control and mitigate the severity of the
pandemic [139], [140].

Some studies have investigated the spatio-temporal
impacts of COVID-19 and associated lockdown and con-
finement measures on air quality. A study in major urban
areas of China [141] investigated the changes in air pollutants
from 26 December 2019 to 22 May 2020 due to COVID-19
control measures using the Euclidean distance (ED) method.
The results indicate that air quality in China has improved
notably due to strict control measures. Comparative results
show that the highest reduction in pollutants was recorded
in Period 2 (January 25 - February 22, 2020) due to the
strictest human-made control measures including a 41.7%
reduction in NO2 in the Yangtze River corridor (i.e., Hubei
region). A gradual decrease in pollutants is observed in many
regions of China due to the relaxation of control measures
in Period 3 (February 23 - March 23, 2020). However,
Hubei province, which was the hardest hit region of China,
shows a greater reduction in pollutants due to the extended
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lockdown period induced by the severity of the pandemic.
In Period 4 (March 24 - April 22, 2020) and Period 5
(April 23 - May 22, 2020), pollutants reduced gradu-
ally in different regions compared to the previous years
(2015-2020). In contrast, the concentration of O3 increased
during the lockdown periods compared to previous years.
Similarly, researchers in [142] and [143] reported signifi-
cant improvement in air quality in major urban clusters of
China after evaluating spatio-temporal impacts of lockdown
measures for the period of January 1 to April 30, 2020 and
January 1 to August 31, 2020, respectively.

Liu et al. [144] studied spatio-temporal patterns and
changes in air pollutants in California, USA before, during,
and after lockdown regimes. A time-series analysis demon-
strates a sudden drop and rise of air pollutants under lock-
down and reopening scenarios, respectively. Spatial pattern
analysis indicates a reducing trend of pollutants in the areas
with major power plants and an increasing trend in residential
areas and adjacent to the highways. The study also found a
higher reduction in pollutants during lockdown (March 19 to
May 7, 2020) compared to before the lockdown regime
(January 26 to March 18, 2020), which provides substan-
tial evidence for environmental impacts of lockdown for
COVID-19. Similarly, investigating the impacts of lockdown
policies, researchers found significant influences of control
measures to reduce pollutants spatially and temporally in
most of the study contexts (e.g., China, South Africa, Brazil,
India, UK, and the US) [145].

The above discussion illustrates that lockdown and
confinement measures of nonpharmaceutical interventions
against the pandemic significantly influence coronavirus dif-
fusion, human mobility, and air quality spatially and tempo-
rally. Thus, with insights from data-driven spatio-temporal
analysis of COVID-19 transmission, we can say that timely
interventions at the right locations can contain the diffusion
and reduce the public health risks significantly.

VI. CONCLUSION, POLICY IMPLICATIONS, AND
DIRECTIONS FOR FUTURE RESEARCH
A. CONCLUSION
The COVID-19 pandemic is one of the most devastating
tragedies that humanity as a whole has experienced in the
past centuries. It has adversely affected public health, social
cohesion, health infrastructure, economic well-being and
progress, transportation systems, and environmental quality.
A range of preventive measures (e.g., lockdown and con-
finement measures, testing, vaccination), personal protection
actions (e.g., face covering, hand washing), and financial
assistance schemes (e.g., income support, debt relief) have
been implemented to control the pandemic and reduce asso-
ciated threats. As another dimension, the social distancing
measures implemented nation-wide as a defensive response
affect travel patterns of people and thereby influence air
quality.

A considerable volume of studies have been conducted to
predict COVID-19 transmission rates, evaluate the impacts

of the pandemic on mobility and air quality, and assess the
effectiveness of lockdownmeasures and the role of air quality
on COVID-19 diffusion (Tables 1 and 4). As a departure
from pandemics that swept the world in previous decades,
many of these studies have usedML techniques to understand
the complex relationships between them (Tables 3 and 7),
leveraging the convergence of the widespread availability of
huge volumes of structured and unstructured data enabled by
wireless and mobile information technologies, and of ML
techniques to analyze them with little to no restriction on
distributional properties of data. Considering the distinctive
ability ofML techniques to deal withmultifaceted andwicked
problems, this study aimed at reviewing the burgeoning body
of past research that applied different ML tools to understand
the intersecting relationships between the COVID-19 pan-
demic, lockdown measures, human mobility, and urban air
quality.

Similar to other strands of studies (e.g., transportation,
environment, and public sentiment), a large body of literature
is using ML techniques in epidemiology research, which is a
major breakthrough in medical history and has made signifi-
cant contributions in transforming public healthcare systems
[146], [147]. Many ML researchers have seized the oppor-
tunity to make their analytics relevant to the pressing needs
of this time due to the convergence of data through cloud
storage and data sharing via the interactive platform, and
powerful analytic tools [148]. ML is very effective and well
suited to handling notoriously wicked problems of epidemi-
ology (i.e., multi-scalarity, non-linearity, feedback effects,
and so on), and it has proved itself worthwhile in previous
research [149]–[151]. ML techniques predict outcomes with
a higher rate of accuracy and reveal the hidden patterns in
the data compared to traditional data processing systems.
ML also allows to integrate multiple modeling approaches
to handle complex and large data sets contrary to conven-
tional methods, which are more in line with the ‘‘one size
fits all’’ principle. So, ML explicitly captures the context,
whether spatial, social or environmental, as well as con-
textual changes; thus, predictions are adjusted accordingly,
which is challenging to handle using traditional statistical and
econometric approaches. Considering the enormous demand
and potentials, the U.S. National Science Foundation (NSF)
has initiated a series of transdisciplinary conversations in
the form of webinars at the intersection of public health,
behavioral and social sciences, smart technologies and data
analytics to catalyze ideas that can further the research and
development at the frontier of predictive intelligence for
pandemic prevention [152].

After critically analyzing the past studies on the emer-
gence and evolution of the COVID-19 pandemic, this study
observed the circumstances that amplify or mitigate the
pandemic situation. In particular, factors of urban form,
socio-economic and physical conditions of people, social
cohesion, and social distancing measures significantly influ-
ence human mobility and stimulate the diffusion of the virus.
Thus, social, physical, and institutional structures and the
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tendency of people to follow social distancing measures
are influential in changing travel patterns and determine
the severity of the pandemic in a city or larger national
territory. Human mobility and COVID-19 pandemic exhibit
bidirectional relationships. During the COVID-19 period,
people tend to travel less and are more likely to use pri-
vate transportation for necessary travel purposes to mitigate
coronavirus-related health problems. This review study also
found that lockdown measures imposed in the wake of the
pandemic significantly reduce the concentration of air pol-
lutants and improve air quality due to reduced energy con-
sumption in transportation and industries. This improved air
quality also ameliorates the COVID-19 situation by reducing
respiratory disease in the population. As a core approach to
predictive analytics, ML is well positioned to bring newly
learned inductive knowledge to the practice of pandemic
prevention and management, but also to transform theo-
ries of pandemics through abductive inference. Moreover,
studies investigating spatio-temporal impacts of lockdown
measures mentioned that government-sanctioned control
measures have significant impact on coronavirus diffusion,
human mobility, and air quality spatially and temporally.
Thus, data-driven spatio-temporal analysis of COVID-19
transmission and timely interventions of the policy mea-
sures can control the pandemic and reduce associated health
risks.

B. POLICY IMPLICATIONS
Several policy implications can be drawn from the above
discussion, as stated below.
• AI andML techniques can be used in future multi-scalar
and non-linear disease modeling, which can yield
more accurate prediction results and formulate relevant
premises for diseases diagnostic and prescribing treat-
ment measures accurately [150].

• Studies have found that COVID-19 related lockdown
measures improved air quality by restricting human
activities and altering the travel patterns. Thus, trans-
portation policies (e.g., driving restriction on certain
days or portion of the day, congestion pricing, emission
standards for vehicles) to restrict automobile driving,
encourage public and active transportation, improve the
fuel efficiency of vehicles, and alternate working pro-
visions, could be effective policy options to reduce air
pollutants [153]–[156].

• Due to people’s concerns on travel safety and hygiene,
recent initiatives (e.g., dedicated lanes for bicycles and
scooters), and changes in behaviors (e.g., telework-
ing, online shopping, and deliveries), mobility providers
are re-evaluating the future of mobility in human
societies [157]. Policy makers should take initiatives
to promote micro-mobility (e.g., cycling, e-scooters)
and future transportation options (e.g., connected and
autonomous vehicles, electric vehicles, shared mobility)
should consider safety and safety issues to address the
changes in consumer preferences.

• Environmental policies (e.g., polluters pay, energy-
efficient production, promotion of renewable energy)
to restrict anthropogenic activities could reduce
environmental pollution and respiratory illness in
post-pandemic situations [81], [156], [158], [159].
A comprehensive plan comprising of land use distribu-
tion, transportation, and environmental policies should
be developed and continued to execute during and after
the crisis, which are essential to achieve desired air
quality standard [156].

• Reducing people’s exposure to air pollutants through
proper urban planning could be an effective pol-
icy option. For example, developing residential areas,
healthcare facilities, educational institutions away from
major sources of pollution (e.g., highway, industrial
areas) are more likely to reduce exposure of people to
the air pollutants [154]. Moreover, city authorities could
establish advanced pollutantsmonitoring stations and air
filters particularly in the highly polluted areas to limit
emissions at the sources, decrease exposure to toxic air
pollutants and protect public health [154], [160], [161].

• Outbreak and transmission of pathogenic diseases such
as COVID-19 could be attributed to man-made and
climate change-induced habitat alterations and interac-
tions [155], [156]. Thus, governments and policymakers
across the globe should incorporate pandemic risk man-
agement strategies in climate action plans and adaptation
schemes.

• Considering the massive disruption of supply chains and
the downfall of tourism sectors, policy makers should
take appropriate initiatives locally and internationally to
achieve a sustainable and resilient logistic management
system and tourism industry [155].

C. LIMITATIONS OF PAST STUDIES AND DIRECTIONS FOR
FUTURE RESEARCH
Despite the well-developed models we have on hand,
convincing findings, and significant contributions from
COVID-19 relatedmobility and air quality studies, the overall
achievements of past studies are somewhat subdued by some
recognizable reasons and hence there is scope for future
research. We state some areas below.

First, some studies used a limited number of variables to
predict coronavirus cases and deaths, which may overlook
other important factors that could influence disease transmis-
sion [54], [60], [63]. Thus, future research should combine
data from other sources such as social media, mass media,
people’s contacts with a special call center for COVID-19,
mobile contract tracing, environmental and climate factors,
and screening registries [54]. Moreover, some researchers
predicted COVID-19 cases for a limited period (i.e., only for
the next 10-12 days), which seems insufficient to assess the
performance of a model as a predictive tool and these models
have limited scope to adjust parameters with changing spatial
and temporal contexts [83], [162].
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Second, some studies only investigated the impact of
mobility patterns on the infection rate [45], [63], [64]. How-
ever, other factors (e.g., late government action, international
travel, social structure, people’s socio-economic factors) may
influence coronavirus cases and deaths. Thus, for more accu-
rate and more meaningful prediction, these factors should
be included in the models. Moreover, these studies mostly
used mobility data (i.e., mobile device location based on
GPS) from Google, Apple, and SafeGraph [7], [53], [55],
[57], [59], [61], [62]. These mobility reports provide inad-
equate information about people’s mobility since many of
them may disable location settings in their mobile devices
or may not have Android/iOS supported mobile. Moreover,
some countries may not have reliable internet access and do
not support Google services (e.g., Iran, China), which may
affect the quality and completeness of the data infrastructure.
Researchers in [52] suggested exploring additional informa-
tion (e.g., vehicle miles traveled, number of miles traveled
per person, trips per person, travel mode share) may explicitly
consider those uncertainties to develop a more trusted model.

Third, researchers have been unable to determine an
association between COVID-19 transmission and popula-
tion characteristics in some high-incidence areas due to the
difficulty to identify whether the cases have a local (i.e.,
community) or international origin [50]. Moreover, the true
magnitude of the viral infection incidence is unknown due to
asymptomatic individuals, differences in testing and report-
ing, and misdiagnosis, which makes the modeling very chal-
lenging. Some studies did not report the accuracy level, which
calls into question the validity of the model [49]. Thus,
studies should incorporate some baselines (e.g., traditional
fitting models) and other metrics for model evaluation (e.g.,
RMSE, summary statistics across bins, confusion matrix,
cross-validation, etc.) [55].

Fourth, some studies did not consider the impacts of sea-
sonal variations on air quality [91], [100]–[104]. A number
of studies also used satellite imagery to estimate the level
of pollutants without considering the seasonal effects [163],
[164]. It is evident that air quality improves gradually from
winter to summer. Therefore, there is conventional seasonal
air quality. It is difficult to reliably establish the effect of
lockdown measures without considering seasonal change.
Changes in air pollutants during lockdown periods are not
necessarily induced by reduced human mobility and eco-
nomic activity, but they could also be attributed to weather
variability coupled with the ongoing COVID-19 [165]. Thus,
it is recommended to include seasonal variables in models to
estimate the effects of lockdown measures on air quality to
avoid any spurious and misleading relationships.

Fifth, the impact of time traveling in shared mobility for
coronavirus transmission is rarely studied in the literature.
However, long duration travel in shared and crowded modes
(e.g., air, bus, train, etc.) may transmit the contagious disease
easily. Previous studies have demonstrated that airborne dif-
fusion of coronavirus in a closed environment during human
expiratory activities (e.g., sneezing, coughing, talking, and

breathing) [166]–[171]. Thus, coexisting in a closed environ-
ment (e.g., public transportation) with other people increases
the risk of COVID-19 transmission, where practicing social
distancing is difficult. A study investigating the possibility
of COVID-19 transmission under different scenarios (i.e.,
no face mask, 50% of people with face mask, 100% people
with face mask) is necessary to provide some guidelines
(e.g., cleaning, ventilation) to increase transit ridership in the
pandemic situation. Hence, this is an important direction for
future research.

Sixth, despite unprecedented data sharing during the
COVID-19 pandemic, the application of AI and ML tools
in epidemiology and other areas is still in its infancy due to
limited access to reliable data infrastructure (i.e., platform,
storage, network, collaboration). However, an efficient data
infrastructure increases data acquisition, business collabora-
tions, and operations by integrating data at various granular-
ities and from diverse sources including unstructured data
like social media data. Thus, priority should be given to
developing a trusted data infrastructure tomake data available
to researchers for data-driven decision making.

Seventh, although ML and deep learning based techniques
are very effective to administer multi-scalar, endogenous,
non-linear, ambiguous, and other issues, the strengths of
these methods are restrained by some crucial shortcomings.
Researchers have argued that many ML and deep learning
based models have major drawbacks due to flawed method-
ologies, underlying high biases in data collected from a
large number of public data repositories that have a little
verification opportunity, inadequate validation using exter-
nal datasets which lacks generalizability, and insufficient
documentation of publicly available datasets and codes for
replicability [172]. Thus, high-quality data, robust method-
ologies, demonstration of strong validation using internal and
external datasets and external models, and availability and
sufficient documentation of public datasets and codes are
necessary to develop a trusted and dependable model that can
provide consistent accuracy across seen and unseen data and
contexts [172]–[175].

Eighth, a hybrid ML modeling framework (i.e., integration
of multipleML techniques) has enormous analytical ability to
handle complex data and solve real-world problems such as
COVID-19 compared to singleML techniques and simulation
models. Thus, future studies should be directed to implement
hybrid ML techniques for efficient and better performing
models for real-world and complex events [176], [177].
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