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Abstract

The bacterial enzyme b-lactamase hydrolyzes the b-lactam ring of penicillin and chemically related antibiotics, rendering
them ineffective. Due to rampant antibiotic overuse, the enzyme is evolving new resistance activities at an alarming rate.
Related, the enzyme’s global physiochemical properties exhibit various amounts of conservation and variability across the
family. To that end, we characterize the extent of property conservation within twelve different class-A b-lactamases, and
conclusively establish that the systematic variations therein parallel their evolutionary history. Large and systematic
differences within electrostatic potential maps and pairwise residue-to-residue couplings are observed across the protein,
which robustly reflect phylogenetic outgroups. Other properties are more conserved (such as residue pKa values,
electrostatic networks, and backbone flexibility), yet they also have systematic variations that parallel the phylogeny in a
statistically significant way. Similarly, the above properties also parallel the environmental condition of the bacteria they are
from in a statistically significant way. However, it is interesting and surprising that the only one of the global properties
(protein charge) parallels the functional specificity patterns; meaning antibiotic resistance activities are not significantly
constraining the global physiochemical properties. Rather, extended spectrum activities can emerge from the background
of nearly any set of electrostatic and dynamic properties.
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Introduction

The bulk of our knowledge concerning protein family evolution

has come from comparative analyses of the large body of sequence

and/or structure data produced over the last five decades. While

this data has been invaluable to our current understanding,

sequence and static structural descriptions provide only a narrow

glimpse into stability and functional mechanisms. Consequently,

there has been a growing interest to include physiochemical and

functional details into molecular-evolutionary analyses [1–3]. For

a complete understanding of these relationships, both conservation

and variation must be characterized. Since conservation of

function is the ultimate evolutionary driving force [4], protein

orthologs tend to be significantly more similar in function than

paralogs, and this functional similarity holds true with increasing

sequence divergence as well [5]. Frequently, conserved functional

patterns can be explained by conserved physiochemical properties

[6,7]. The b-lactamase (BL) enzyme family provides an excellent

mix of preserved and adaptable physiochemical properties that

require evolutionary/functional relation interpretation. On the

functional aspect, BL enzymes have a chemically diverse set of

substrates. Moreover, many BL enzymes can act on the same

substrate despite being from evolutionarily distinct outgroups,

leading to questions related about the presence (or absence) of

conserved mechanistic strategies.

Antibiotic resistance continues to outpace our ability to bring

new antibiotic drugs to market [8], leading to substantive fears

about our continued ability to combat bacterial infections that are

currently relatively benign. Central to this growing global health

concern is the bacterial enzyme BL, which is produced by some

bacteria [9]. BL confers resistance to penicillin and related

antibiotics by hydrolyzing their conserved 4-atom b-lactam

moiety, thus destroying their antibiotic activity [10]. Bacteria of

all species depend on a cross-linked peptidoglycan layer, which

preserves cell shape and rigidity. This peptidoglycan layer is

primarily composed of alternating b(1,4)-linked monosaccharides,

specifically N-acetylglucosamine and N-acetylmuramic acid. The

latter is modified by a pentapeptide that always ends with two D-

alanine residues. Cross-linking of peptidoglycan units is catalyzed

outside the cytoplasmic membrane by cell wall transpeptidase

enzymes. In this cross-linking process, a peptide bond is formed

between penultimate D-alanine on one chain and pimelic acid (in

Gram-negative) or L-lysine (in Gram-positive) residue on the

other. The terminal D-alanine is cleaved off after the linkage is

formed with the penultimate residue. b-lactam antibiotics

effectively inhibit bacterial transpeptidases, consequently they

are often called penicillin binding proteins (PBP). By inhibiting

cell wall synthesis, the bacteria become highly susceptible to cell

lysis.
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In response, bacteria have evolved BL enzymes to defend

themselves against b-lactam antibiotics. BL has, in fact, evolved

from the functional domain of PBP through the acquisition of the

new hydrolase activity [11]. The BL enzyme family is broad and is

characterized by varying degrees of antibiotic resistance activity.

In fact, extended spectrum b-lactamases (ESBL) also confer

resistance to cephalosporins, which had previously eluded BL

hydrolysis [12,13]. ESBLs are evolved from traditional BL genes,

generally through mutations within the active site [14,15], thus

highlighting the critical importance of subtle differences within

members of the BL family. To date, more than 470 BL enzymes

have been identified and are typically classified into 4 classes (A to

D) based on sequence similarity [16]. Bush et al. developed a

classification scheme for BL proteins based on their functional

characteristics [17]. Protein structures belonging to classes A, C

and D have similar folds and all have a mechanism that involves a

catalytic serine residue, whereas class B enzymes are zinc

metalloenzymes that have a distinct fold. In this work we focus

on the most clinically relevant class-A family.

Comparing a number of different electrostatic and dynamical

global properties, we quantify the extent of conservation across the

class-A BL family. Our dataset includes twelve structures, each

originating from a different bacterial species. We show that – as

expected – many of the global properties are qualitatively

conserved (such as residue pKa values, electrostatic networks, and

backbone flexibility). Additionally, the local active site V-loop that

is important for substrate recognition and catalysis is consistently

established to be marginally rigid. However, some properties

visually show large variance, and all properties have quantitative

differences to varying degrees. In order to understand the origin of

this variation, we quantitatively compare the differences within

each property against the evolutionary clustering established by

the family’s phylogeny. Our results clearly establish that the

systematic differences parallel the evolutionary patterns in a

statistically significant way. To the best of our knowledge, this

report establishes the most comprehensive and statistically robust

relationship between physiochemical properties and evolutionary

patterns. Going further, we also demonstrate the physiochemical

properties parallel in a statically significant way the environmental

condition of the bacteria they come from, which is not surprising

since environmental segregation is likely related to divergence.

Finally, we compare the same set of property differences to

antibiotic specificity patterns. With the exception of enzyme

charge, no correlations to antibiotic specificity are found,

indicating that there is not a simple correspondence between

global physiochemical properties and antibiotic specificity. This

latter point is particularly alarming because it stresses that new

antibiotic resistance patterns can emerge from a large fraction of

the known BL enzymes through relatively small changes that do

not significantly alter the global properties. Taken together, these

results explain the variation within class-A BL physiochemical

properties, while simultaneously suggesting new avenues of

research regarding the plasticity within antibiotic resistance

patterns.

Results/Discussion

Conservation and variation within residue pKa values
Due to their clinical significance, serine-based class-A b-

lactamase proteins are one of the most widely characterized

enzyme families. The catalytic mechanism involves acylation of

residue Ser-70 at the active site. However, identification of the

general base that activates this serine residue has always been a

subject of controversy. As such, two distinct residues have been

proposed. While one hypothesis suggests that this role is played by

the conserved Glu-166 [18–21], the other proposes Lys-73 [22–

24]. In support of the first hypothesis, crystallographic data and

MD studies [21] have suggested the presence of a conserved

bridging water molecule that might act as a relay molecule for the

transfer of proton between Ser-70 and Glu-166. Based on other

experimental studies involving Glu-166 mutation [24,25], the

second hypothesis proposes an unsymmetrical mechanism involv-

ing two different general bases, Lys-73 and Glu-166 that carry out

acylation and deacylation respectively. Swaren et. al. [26] have

argued that substrate binding raises the pKa of Lys-73, which

contributes to lowering of energy barrier for Ser-70, highlighting

the importance of Lys-73 in proton transfer. Conversely, kinetic

studies of several Glu-166 mutant enzymes [27] have displayed

decreased rates of acylation and deacylation, emphasizing that

Glu-166 is more important. Due to this absence of Glu-166

negative charge in mutant proteins, the Lys-73 side chain exhibits

a lower pKa shift, acting as an alternate general base in hydrolyzing

b-lactam ring [28]. Regardless of which hypothesis is correct, the

above studies clearly highlight the importance of both Lys-73 and

Glu-166.

Several other residues have also been identified in BL that are

catalytically important: Ser-70 being the primary catalytic residue;

Lys-73, Glu-166, Ser-130, Lys-234 as secondary catalytic residues.

Finally, Asn-136, Arg-164, Asp-179 are other important residues

that maintain the active site structure (Figure 1a). All of these

residues are in spatial vicinity of Ser-70 and affect substrate

recognition and catalysis. Detailed sequence and structural

comparison across the class-A family has identified similar

structural and functional elements that span over active site

residues mentioned above [29–32]. These conserved elements are

SxxK, SDN, ExxLN and KTG.

Conservation of important electrostatic properties is a com-

monly employed mechanism that leads to conserved function

[6,7]. Figure 2a shows calculated residue pKa shifts (shifted away

from their model values) across twelve BL proteins. Interestingly,

these pKa shifts are mostly conserved, emphasizing a common

mechanistic strategy. We further investigate the site-site interac-

tions of residues that have strong electrostatic interactions (more

than 1 kcal/mol) with the secondary catalytic residues Lys-73,

Glu-166 and Lys-234 (Figure 1c). Remarkably, all conserved

electrostatic sites overlap with the four conserved element regions,

Author Summary

Comparison of protein sequences and structures sharing
function has become a well-established bioinformatics
paradigm, leading to countless discoveries related to
protein family sequence/structure/function relationships.
However, sequence and structure alone provide only
crude physiochemical descriptions, thus stressing the need
for more sophisticated analyses. In this work, we deter-
mine how much dynamical and electrostatic properties
vary across the b-lactamase enzyme family. Our results
indicate that some properties are mostly conserved across
the family, whereas others vary significantly despite the
fact that all share the same high-level b-lactamase activity.
Despite global variance in some metrics, systematic
differences are frequently observed between evolutionary
outgroups, indicating that physiochemical properties are
simultaneously conserved and variable. As such, these
results underscore the richness within physiochemical
properties across a protein family and provide insight into
how the variations came about.

b-Lactamase Physiochemical Properties
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highlighting the strength of the active site electrostatic forces. All

pairwise active site interaction energies are listed in Table 1.

Further, all these sites have a conserved pKa shift. Asp-131, Glu-

166, Asp-179 and Asp-233 display strong acidic character,

whereas Lys-73 and Lys-234 exhibit conserved basic shift in pKa.

Lys-73, which acts as proton extractor from Ser-70, needs to be

deprotonated for acylation. As such, there is a cationic electrostatic

microenvironment surrounding Lys-73, which is created by

nearby basic residues Lys-234 and Arg-244 [24]. When Arg-244

is missing (which is the case in the NMC-A, MFO and G

orthologs), this role is acquired by Arg-164 as shown in our active

site electrostatic networks plot (Figure 2b). Another important

feature of BL proteins is the V-loop (comprising of residues 163–

178) that is involved in substrate recognition. Additionally, the V-

loop comprises Glu-166, which is critical for deacylation activity.

Our results reveal a strongly conserved acidic behavior within Glu-

166, which activates a water molecule in the vicinity to attack

carbonyl carbon of the acyl-enzyme. This ensures a back-delivery

of the abstracted proton to Ser-70 c-O atom, leading to enzyme

regeneration [21].

Conservation and variation within electrostatic potential
maps and protein charge

The above results highlight the importance of conserved local

electrostatic properties, whereas Figure 3 demonstrates that global

electrostatic potential maps can be quite varied across the whole

family. For example, the BS3 structure is primarily anionic,

whereas the PC1 penicillinase is mostly cationic. Nevertheless, key

features within the electrostatic potential maps are visually

conserved within evolutionary outgroups. This point is exemplified

by the TEM/SHV enzymes that have a conserved anionic patch

spanning helices H3, H4, H6 and the V-loop (cf. Figure 1b);

however, the patch typically missing from structures outside this

outgroup. Similarly, other outgroups conserve visual electrostatic

features, yet no potential map features visually align with antibiotic

activity patterns.

Differences within the electrostatic potential maps are not

unexpected owing to the sequence and structural variability within

the dataset. Pairwise sequence identities range from 27% to 98%,

which translates to a-carbon root mean square differences up to

2.6 Å. Moreover, the net charge of these twelve enzymes ranges

from 26 to +15 (Table 2). This large structural variation with

distinct electrostatic properties raises the question, ‘‘How does

nature maintain the common functionality of enzymes?’’ Key

sequence/structure motifs provide an insight into the description

of the underlying conservation. Sequence conserved regions SDN

and KTG have a strictly conserved charge of 21 and +1,

respectively, across all twelve BL enzymes. Interestingly, the other

two key regions, SxxK and ExxLN, which have variable sites x,

are also strictly conserved with a charge of +1 and 22,

respectively. ExxLN lies within the 16-residue V-loop

(xRxExxLNxxxxxxxx) that maintains an overall negative charge

(except PC1) ranging from 22 to 24. The conserved electrostatic

properties of key regions range from simple local conservation of

charge to complex evolutionary origins of BLs. Conservation of

charges at mutable motifs and V-loop are achieved through

concerted mutations. When there is a charge changing mutation at

these important electrostatic regions, there is a charge compen-

sating mutation elsewhere.

Differences within electrostatic properties reflect
evolutionary patterns

The preceding sections reveal a rich mixture of conservation

and variability within pKa values of important residues, charge,

and electrostatic potential maps. Moreover, even when properties

are visually conserved, quantitative differences are almost always

present. Can the propagation of these differences across the

family be explained? To answer that question, we perform

Figure 1. Significant b-lactamase residues and its electrostatic
characterization. (a) Structure of a Class-A b-lactamase enzyme. The
active site is located at the domain interface. The catalytic residue Ser-
70 is shown in red. Other catalytic residues are shown in orange,
whereas the V-loop is shown in blue at the top. Residues that maintain
the structural integrity are shown in cyan. (b) Electrostatic potential
values of 61 kcal/mol are mapped to the protein surface. Red indicates
negative potential, while blue indicates positive potential. The structure
is oriented to display a patch of negative potential at the interface of
the V-loop and helices H3, H4 and H6 that is conserved within the TEM/
SHV enzymes. (c) Conserved electrostatic networks (cf. Figure 2b) are
mapped to a BL structure. Green colored spheres represent a-carbons
of residues interacting strongly with catalytic residues, which are
highlighted in orange.
doi:10.1371/journal.pcbi.1003155.g001

b-Lactamase Physiochemical Properties
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statistical tests (cf. Methods) to elucidate the hidden relationships

between enzyme sequence and physiochemical properties.

Specifically, we test the statistical significance of pattern

relationships between the global properties and the evolutionary

outgroups defined from the BL phylogeny. That is, are

differences within these global properties suppressed within

Figure 2. Electrostatic properties of b-lactamase family. (a) Multiple sequence alignment of twelve b-lactamases color-coded by shifts in
residue pKa values from model values. Residues colored red express increased acidity, whereas residues colored blue show increased basicity. (b)
Residues colored green exhibit strong (.|61| kcal/mol) electrostatic interactions with catalytic residues that colored orange. The identified residues
are also highlighted in the b-lactamase structure provided in Figure 1c. The V-loop region is indicated by the purple box. A cartoon representation
of secondary structure is displayed on top of each alignment, while active sites are displayed below.
doi:10.1371/journal.pcbi.1003155.g002

Table 1. Summary of the active site electrostatic network1.

Lys-73 Asp-131 Glu-166 Asp-179 Asp-233 Lys-234 Ser-70

Lys-73 – 6.0 (8.5) 2.8 (10.2) 10.9 (5.4) 11.2 (4.8) 4.1 (8.3) 3.1 (12.8)

Asp-131 23.4 (17.7) – 8.1 (5.1) 16.7 (2.6) 14.6 (4.9) 8.3 (4.9) 8.7 (6.7)

Glu-166 27.6 (15.3) 1.7 (12.0) – 8.1 (5.6) 15.0 (4.2) 7.7 (7.2) 3.4 (27.9)

Asp-179 21.0 (11.8) 0.3 (8.6) 1.7 (9.6) – 19.3 (3.0) 13.9 (4.7) 10.2 (4.5)

Asp-233 20.9 (10.4) 0.4 (11.2) 0.5 (8.0) 0.3 (10.9) – 5.3 (4.2) 11.3 (8.4)

Lys-234 4.0 (13.0) 21.5 (9.5) 21.7 (9.6) 20.6 (13.9) 23.3 (12.8) – 4.7 (9.6)

1With the exception of the last column, values in the upper triangle provide the minimal distance (in Å) between atom pairs in the two residue side chains, whereas
values in the lower triangle quantify the pairwise electrostatic potential energy (expressed in kcal/mol).
Values in the last column provide the minimal distance (in Å) between atom pairs of the electrostatic network residues and the catalytic Ser-70. The reported values are
the average across the dataset, and the coefficient of variation is shown in the parentheticals (expressed as a percent).
doi:10.1371/journal.pcbi.1003155.t001

b-Lactamase Physiochemical Properties
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phylogenetic outgroups relative to differences across multiple

outgroups? The answer is yes, we indeed find this to be the case

for all electrostatic properties, including electrostatic network

pairwise energies, electrostatic network composition, residue

charge, and per residue pKa shifts (cf. Table 3). As such, these

results conclusively establish that the observed variations within

physiochemical properties, which can at times be extreme, are

robustly defined by the phylogeny, thus indicating that variation

within these global physiochemical properties is an evolutionary

driving force underlying BL divergence. Conversely, variations

observed with the local active site V-loop do not reflect the

phylogenetic clustering because these properties are too con-

served based on strict mechanistic requirements imposed on all

BL enzymes.

Figure 3. Relationship between phylogeny and electrostatic potential maps. The class-A b-lactamase family phylogeny is shown, which
differentiates into 7 subgroups using a constant cut-level. Outgroups are represented by a unique color for better visualization. The structures closest
to the phylogeny are oriented to highlight the active site region, which is indicated in green in the TEM-1 ortholog. Structures in the outer ring have
been rotated in the y-direction by approximately 90 degrees, which highlights the V-loop region, also indicated in green. It is clear that structures
from the same outgroup have visually similar electrostatic potential maps, whereas there are significant differences across the whole phylogeny.
doi:10.1371/journal.pcbi.1003155.g003

b-Lactamase Physiochemical Properties
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Similarly, we divided the BL family into four groups based on

the environmental conditions of the bacteria they are from. First,

we stratified the dataset based on whether the bacteria is aerobic

or facultative anaerobic, and we additionally stratified based on

whether the bacterium is gram-positive or gram-negative, which

affects the locations of where the bacteria are likely to be found.

For example, gram-positive bacteria tend to survive in dry

conditions and are found in places like skin or in dust, whereas

gram-negative bacteria thrive in aqueous conditions. As before

with phylogenetic outgroups, we find that the variations within the

electrostatic network pairwise energies, electrostatic network

composition, residue charge, and per residue pKa shifts reflect

environmental condition in a statistically significant way. Through

congruence, the two sets of results clearly indicate that environ-

mental condition has played an important role in BL evolution.

This is not new [33] or surprising, but it does represent the first

time that physiochemical properties were used to demonstrate the

relationship between the two.

One of the most attractive features of the BL system is that, in

addition to the phylogeny, the family can also be clustered based

on antibiotic specificity. Performing the same analyses a third

time, but now based on the antibiotic specificity patterns, only

one (charge) of the electrostatic properties reflects the physio-

chemical properties in a statistically meaningful way. This

indicates that antibiotic specificity patterns are not confined to

narrow property ranges, and that the considered properties do

not drive the global divergence of the family. This result is

interesting and surprising considering the common view that

function is the ultimate evolutionary driving force. Moreover,

from a public health point of view, this result is alarming

because it highlights that new activities can emerge from any

global property background. Put otherwise, new antibiotic

resistance activities, including those found in ESBLs, are

evolutionary easy to achieve because they come about through

small changes that do not globally affect structure and the

concomitant electrostatic properties (electrostatic network

Table 2. Characterizations of charge and H-bond properties.

Enzyme SxxK Charge ExxLN Charge V-loop Charge Total Charge Total HB Energy Number of HB Avg. HB Energy

G 1 22 22 23 21631.3 559 22.9

TEM-1 1 22 24 25 21609.6 513 23.1

NMC-A 1 22 23 1 21588.3 520 23.1

SME-1 1 22 21 7 21728.4 550 23.1

PSE-4 1 22 22 24 21548.0 529 22.9

TEM-52 1 22 24 1 21590.9 557 22.9

L2 1 22 21 2 21534.6 528 22.9

SHV-2 1 22 23 1 21633.2 539 23.0

SHV-1 1 22 23 1 21570.7 532 23.0

MFO 1 22 22 26 21503.0 507 23.0

PC1 1 22 2 15 21559.3 495 23.2

BS3 1 22 24 25 21669.1 522 23.2

Average 1 22 22.3 0.4 21597.2 529.3 23.0

CV1 0.0% 0.0% 76.1% 1430.7% 3.9% 3.7% 3.8%

1Coefficient of variation = standard deviation/mean * 100.
doi:10.1371/journal.pcbi.1003155.t002

Table 3. P-values from the statistical z-test comparing physiochemical patterns to two different clustering sets.

Property1 Evolutionary Relationship Environmental Condition Antibiotic Specificity

H-bond contact map **1.261023 **5.361023 2.261021

Residue charge **3.661023 **1.361022 **1.461022

Electrostatic interaction network energy **3.961023 **1.461022 8.361022

Electrostatic interaction network composition (RM) **4.861023 **9.461023 1.061021

H-bond density per residue **6.261023 **4.461022 3.361021

Change in pKa
**8.461023 **2.461023 8.261022

Cooperativity Correlation (CC) **1.861022 5.361022 4.861021

Backbone Flexibility (FI) **1.861022 **2.761022 2.461021

V-loop residue charges 8.261022 2.361021 **1.961022

V-loop delta pKa 8.361022 2.361021 8.961022

V-loop FI 1.761021 2.161021 1.461021

1Values less than 0.05 (indicated by **) signify structure/function/evolutionary relationships.
doi:10.1371/journal.pcbi.1003155.t003

b-Lactamase Physiochemical Properties
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pairwise energies, electrostatic network composition, residue

charge, and per residue pKa shifts).

The only physiochemical property that reflects the functional

patterns in a statistically significant way is residue charge at

pH = 7.0, which is consistent with several prior works demon-

strating the importance of charge-charge interactions within BL

function and specificity. For example, Selzer et al [34] designed

new BL proteins by altering surface charged residues that increase

association rates. This change in biophysical property leads to

changes in long-range electrostatic forces that may even change its

functional specificity. Formation and breaking of ionic interactions

in directed evolution experiments have also been exploited to

design new proteins with distinct substrate activities [35,36].

Conservation and variation in flexibility/rigidity
properties

Using the minimal Distance Constraint Model (mDCM), which

we have used to characterize dynamic properties across several

different groups of related proteins [37–42], we also characterize

the extent of dynamical changes in BL. This work is particularly

important because only a small number of class-A BL proteins

have been studied by NMR and molecular dynamics simulation.

As such, little is known about variation and conservation of

dynamical properties across the BL protein family. Figure 4a

displays the multiple sequence alignment of twelve BL proteins

color-coded by flexibility index (FI), which quantifies local

flexibility along the protein backbone. Residues colored blue are

rigid, whereas the ones colored red are flexible. Figure 4b

quantifies the average FI across the complete dataset displaying

average FI curve with +/21 standard deviation. Positive FI values

reflect the amount of excess degrees of freedom in flexible regions,

and negative values reflect the amount of excess constraints in

rigid regions. These results highlight two significant points. First,

BL enzymes have a predominantly rigid backbone, and second,

this backbone rigidity is conserved across the whole family.

Normally, our calculations do not predict structures to be so rigid,

but this prediction is consistent with NMR S2 order parameter

descriptions [43]. The extent of rigidity is also visible at the N and

C termini of BS3, TEM-1, SME-1 and SHV-2. The flexibility/

rigidity results of BL proteins presented in Figure 4a are rank

ordered based on increasing average rigidity characteristics.

Across the alignment, the secondary structure elements appear

rigid, whereas intervening loops are flexible (except the V-loop).

Three flexible regions have been identified as shown in Figure 4c:

flexible region 1 at helix H3, flexible region 2 between H9 and

H10 and finally flexible region 3 at H11. While helix H10 is rigid,

it is sandwiched between two flexible regions, meaning it could

also have high mobility because the rigid body can ‘‘swing’’ from

the flexible hinge in the same way a pendulum swings at a flexible

pivot. We point this out because molecular dynamic studies have

shown increased mobility in helix H10 upon substrate binding

[44].

Mobility within the V-loop is thought to be important for

substrate recognition and catalysis. Dynamic simulations per-

formed in the past have suggested that the V-loop is rigid with

order parameters comparable to other secondary structure

elements [45]. The authors also illustrate the importance of

flexibility at the tip of the V-loop, which is important for the

opening and closing motion. Interestingly, mDCM results indicate

that the V-loop is consistently isostatic, that is, marginally rigid

along with eight active site residues (cf. Figure 5). As discussed

above, the V-loop includes a key catalytic residue, Glu-166, that

performs the deacylation step. Furthermore, deletion of the V-loop

makes the protein deacylation deficient resulting in the formation

of stable acyl-enzyme complexes [46]. The marginally rigid V-loop

suggests its catalytic importance where rigidity is important for

reproducibility in substrate binding, yet also allowing for motion

that might be functionally required. The V-loop region spans over

three out of eight catalytic residues. Except Asn-136, all catalytic

residues exhibit similar isostatic nature even though they occur

throughout the BL sequence.

In stark contrast to the global variability observed across the BL

dataset, the marginal rigidity and electrostatic properties of the

active site region are conserved. In most cases, small increases in

new activities can be directly attributed to only a handful of active

site mutations that sterically allow new substrates to bind [10]; yet

active site rigidity is maintained. In fact, this active site rigidity was

recently utilized to develop new BL inhibitors using a fragment

based drug design strategy [47]. These results support the view

that steric and electrostatic complementarity between active site

and different antibiotics are primarily responsible for BL resistance

activities [48]. Note however that the CTX-M BL enzymes do

show increased active site flexibility [49], while maintaining active

site geometrics consistent with the narrow spectrum TEM-1 and

SHV-1 enzymes, thereby stressing their mechanistic plasticity

within antibiotic resistance activities. Note that the CTX-M

structures do not meet our structural quality criteria (cf. Methods);

as such, they are not included in these analyses.

In addition to backbone flexibility, the model also calculates a

correlation metric called cooperativity correlation (CC) that

describe pairwise mechanical couplings. As illustrated in Figure 6,

CC between a pair of residues in the native state can be rigidly

correlated (colored blue), flexibly correlated (colored red), or

uncorrelated (colored white). Taken together, the full CC plot can

help elucidate allosteric couplings within structure. In a previous

investigation of periplasmic binding proteins [38], the variability

within the cooperativity correlation was explained by differences

within the H-bond network. Interestingly, the H-bond network of

BL proteins remains conserved (discussed below), yet we observe

substantial diversity and richness of CC throughout our dataset. In

this way, the results presented here are much closer to our results

with thioredoxin [40], CheY [50] and lysozyme [42] that stress the

sensitivity of CC, and thus allostery, to subtle structural

perturbations. To further investigate this susceptibility within

BL, we again layer the physical descriptions of structure onto the

BL phylogeny. As with the electrostatic potential maps, CC

properties again cluster in a way that reflects local evolutionary

outgroups (cf. Figure 6). For example, TEM-1, TEM-52, SHV-1

and SHV-2 are largely composed of a single rigid cluster, which is

consistent with earlier NMR [43] and MD [51] assessments of

TEM-1 that indicated it is quite rigid. Carbapenemases SME-1

and NMC-A represent a close evolutionary pair, and thus have

similar flexibility properties. Conversely, the L2 cephalosporinase,

which belongs to a distinct outgroup, is atypically flexible.

As before, the global FI and CC metrics also reflect the

evolutionary and environmental condition patterns in a statistically

significant way, but not the antibiotic specificities. Comparison of

the two penicillinases within the dataset provides an illustrative

example of how large the differences within the physiochemical

properties can be, even among enzymes sharing antibiotic

resistance activities. The backbone of penicillinase PC1 is the

least rigid structure characterized, and it also has a very atypical

cationic electrostatic surface. However, neither property is shared

with penicillinase G. Its surface is primarily anionic and its

backbone is significantly more rigid than the average structure.

Significant CC differences between the pair are also observed.

While large, the differences within the penicillinase pair are not

outside ranges established by our whole dataset, especially
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considering the early evolutionary divergence between PC1 and G

established by the phylogeny.

Multiple attempts to relate electrostatic and rigidity relation-

ships were made, but all were unsuccessful. Nevertheless, these

results clearly demonstrate how systematic differences within

electrostatic properties and CC parallel the overall phylogeny

across BL enzyme family. Further, it is interesting to note how

nature preserves the active site dynamics and their electrostatics

properties during evolution. Conservation of function provides the

selection bias for proteins to maintain globally similar dynamics

while evolving to varying substrate recognition patterns.

Conservation and variation in hydrogen bond networks
Table 2 describes the global H-bond statistics showing the

number of H-bonds and average total energy across the twelve BL

structures. Since the mDCM is in large part based on H-bond

networks, it is critical to understand how their variation can affect

dynamical properties. H-bond statistics show that the number of

H-bonds varies from 495 to 559, whereas the average H-bond

energy ranges from 22.86 to 23.20 kcal/mol. In our previous

studies we have noticed that the number of H-bonds can be

trivially explained by the size of the protein [38]. However, due to

their relatively constant size, no such correlation is observed here.

We also find that the above variations do not trivially predict

differences within backbone FI and CC. That is, structures with

more H-bonds are not necessarily more rigid than those with

fewer. As we have discussed previously [40,42], this observation

again stresses that topological considerations get lost in global

metrics due to nonadditive nature of the mDCM, which has a

considerable effect on the output.

We employ a simple but effective approach for comparing H-

bond networks by plotting the H-bond density per residue and the

H-bond contact maps to visualize essential differences (Figure 7).

There is a rich density of H-bonds at strand b1, the V-loop and

b9, which are conserved throughout the family (Figure 7a). An

overlapped H-bond contact map of all the twelve BL structures

gives us an insight of regions with strong H-bond interaction,

where each pixel is color-coded by H-bond strength (Figure 7b

and 7c). The site labeled 1 shows strong interactions between three

regions that extend over all key catalytic sites. Similarly,

experimental studies [46] have highlighted the importance of

strong interactions between (i.) Lys-73 and Glu-166, (ii.) Arg-164

and Asp-179, and (iii.) Asn-136 and Glu-166. In those reports, the

authors emphasize that removing any of these interactions can

make the enzyme catalytically inefficient, while also disturbing its

stability. Site 2 on the contact map highlights a strong interaction

network within the V-loop region. Based on its location, the

network is thus assumed to be important for maintaining

functionality. Site 3 illustrates the presence of strong interactions

between strands b1 and b9, which is assumed related to structural

stability. Furthermore, strong H-bond interactions are observed at

secondary structures as expected. Another interesting observation

is that sites 1 and 3 represent the two distinct BL domains (as

defined by SCOP), whereas site 2 is at the interface between the

Figure 4. Backbone flexibility of b-lactamases is well conserved. (a) The flexibility for each structure is mapped onto the multiple sequence
alignment of the class-A b-lactamase family. The backbone of residues colored red is flexible, whereas blue indicates rigidity. The spectrum bar
illustrates the extent of flexibility and rigidity, which ranges from 21 to +1. (b) Flexibility index values averaged across the family are shown in in
green, whereas the dashed lines highlight fluctuations (as defined by 61 standard deviation). (c) Visual observation of backbone flexibility identifies
three main flexibility regions that are mapped on to the structure. These flexible loops might have an important role in protein functionality.
doi:10.1371/journal.pcbi.1003155.g004
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two domains and overlaps the active site, thus further stressing the

importance of the V-loop region.

The conserved regions of high H-bond density, which is most

pronounced in secondary structure elements and the V-loop

region, leads to conservation of backbone rigidity. However, local

H-bond conservation does not necessarily indicate that their

energies are equivalent, which could lead to the observed

differences within backbone flexibility and cooperativity correla-

tion. As such, we also compare the H-bond contact maps to the

observed property differences to the evolutionary and antibiotic

specificity patterns. As with most of the other physiochemical

quantities, differences within the H-bond networks again reflect

the evolutionary, but not antibiotic specificity patterns. In fact, the

relationship between the H-bond contact map and the evolution-

ary patterns is the strongest relationship (lowest p-value) observed.

A statistically significant relationship is also observed by looking at

the H-bond density of each residue.

Conclusions
The BL enzyme family represents an interesting case study in

protein family evolution. While conservation of function is the

primary driving force in the evolution of most protein families,

rampant antibiotic overuse has introduced new pressures leading

to new resistance activities that reflect subtle differences within

substrate specificity. The bulk of these changes are trivially

explained by steric changes within the BL active site [52];

however, it has never been determined if antibiotic specificities are

related to global physiochemical properties. We clearly demon-

strate that they are not. On the other hand, all of the global

properties considered here vary in a systematic way that reflects

the family’s phylogeny. Physiochemical properties diverged early

in the evolution of the family, leading to outgroups with conserved

properties therein, and systematic differences between them.

Related, stratifying the dataset based on the environmental

condition the bacteria they are from also parallels the variations

within the global physiochemical properties. Interestingly, differ-

ences within local properties at the V-loop region do not reflect

either because variation is suppressed based on functional

requirements.

The differences and similarities within two pairs of class-A BLs

encapsulate our results. First, consider the PC1 and G pair of

penicillinases. The phylogeny clearly indicates that these proteins

diverged early in the evolutionary history of the family, yet they

have identical antibiotic specificities. In spite of the functional

conservation, the evolutionary divergence has led to very different

global physiochemical properties, which can be seen most starkly

in the global electrostatic potential maps (Figure 3) and

cooperativity correlation plots (Figure 6). Conversely, MFO is

from the same evolutionary outgroup as G, but they have vastly

different specificities (MFO has extended spectrum activities and

can be classified as a cephalosporinase that can also hydrolyze

monobactams). Despite substrate specificity differences, the

electrostatic potential maps and cooperativity correlations plots

are very similar as a consequence of their close evolutionary

relationship. This point is particularly noteworthy and cautionary

because it suggests that new antibiotic specificities, including

extended spectrum activities, can emerge from the background of

nearly any set of electrostatic and dynamic properties through

local changes that do not significantly alter the global properties.

Methods

Continuum electrostatic calculations
Additions of hydrogen atoms, residue pKa calculations and

intramolecular electrostatic interactions have been performed on

energy minimized protein structures using H++ web server [53].

Hydrogen atoms were added and their positions optimized (MD

based) after calculating ionization states of the titratable residues

using Poisson-Boltzmann continuum electrostatics. The server

uses MEAD suite of programs, and detailed information of the

algorithm can be found here [53]. The salinity and pH

conditions are kept consistent with the conditions used in the

original DSC experiment, i.e., 0.06M salt concentrations and

pH 7.0; and a solvent dielectric constant of 80 and an interior

protein dielectric of 6. Residue acidity and basicity changes

(Figure 2a) are calculated with respect to model pKa values from

[54]. The .pqr file generated from H++ containing charge and

radii information is fed into APBS [55] to generate electrostatic

potential data. The protein is centered on a 65697665 grid. The

electrostatic potential maps in Figure 3 are displayed at +/

21.0 kcal/mol.

The distance constraint model
The DCM is fundamentally based on a free energy decompo-

sition scheme that explicitly accounts for nonadditivity within

entropic components [56]. Therein, macromolecular structure is

described as an ensemble of network rigidity topological frame-

works, where intramolecular interactions are modeled by distance

constraints and vertices represent atomic positions. Interactions

Figure 5. The backbone flexibility index reveals the nearly
conserved isostatic nature of both (a) the V-loop and (b) the
eight active site residues. The black line indicates the average value.
Marginal rigidity is able to maintain the active site structure, while also
allowing for the flexibility needed for substrate recognition and
catalysis.
doi:10.1371/journal.pcbi.1003155.g005
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such as covalent bonds, hydrogen bonds, and local residue

conformational states are modeled as a three-dimensional network

(or framework) of distance constraints. Distance constraints restrict

the amount of available degrees of freedom (DOF) between

adjacent vertices, and each framework is used to describe a set of

similar geometric conformations that share a common set of

interactions. Distance constraints are associated with a component

enthalpy and entropy, and the total enthalpy of a given framework

Figure 6. The phylogenetic tree along with the corresponding protein structures and cooperativity correlation plots. Sequence and
structure dynamics are evolutionary related as evident from cooperativity correlation clustering. Structures are color coded by backbone flexibility
index, which illustrates that all b-lactamase family members are primarily rigid with some punctuating flexible loops. Conversely, pairwise allosteric
couplings are overall varied, yet typically conserved within evolutionary outgroups.
doi:10.1371/journal.pcbi.1003155.g006
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is simply the sum over the set of distance constraints. The free

energy of a given framework is calculated by:

Gcnf fð Þ~
XNint

t

htNt fð Þ{RT
XNint

t

stIt fð Þ ðEq:1Þ

where Nint is the number of different types of modeled interactions,

ht and st define enthalpy and entropy of a single distance

constraint used to model interaction type t. Nt is the number of

times interaction t occurs in a given framework, f , and It is the

number of independent constraints of type t, where, It is always less

than or equal to Nt.

However, entropy components are nonadditive due to correla-

tions within the dynamics, thus simple sums result in drastic

overestimations of the total entropy. Entropy components are

additive only over the set of independent DOF [57,58]. The DCM

employs efficient network rigidity graph algorithms [59–61] to

quickly differentiate the independent and redundant constraints.

Adding a constraint within a flexible region of the network

removes a single DOF, whereas adding a constraint to a rigid

region has no entropy affect because all DOF in that region have

already been consumed. The network rigidity algorithm recur-

sively adds distance constraints based on their order of entropy

(from smallest to largest), rigorously providing the lowest upper

bound estimate of the total entropy [62]. Note that a given

chemical interaction can be modeled by more than one constraint.

For example, torsion force is modeled as one constraint, H-bonds

and covalent bonds as five. The free energy of a given protein

would simply be based upon the above calculation if thermal

fluctuations did not occur. Hence, topological differences arise due

to fluctuating interactions, which account for the forming and

breaking of weak interactions at equilibrium. Covalent bonds are

quenched, meaning they need not be parameterized since the set is

uniform across the ensemble. In the mDCM, torsion angle forces

are segregated into native and disordered states, and H-bonds can

be present or not. Salt bridges are modeled as a special case of H-

bonds. For BL, the number of microstates is astronomical

(,21850); as such, the process of solving the mDCM for proteins

is based on heterogeneous mean field theory [62]. A free energy

landscape is defined by order parameters that specify the number

of H-bonds (Nhb) and native torsions (Nnat) within a given

Figure 7. Conservation in H-bond networks. (a) H-bond density is plotted per residue, which identifies regions rich in H-bond interactions. The
V-loop is shown inside purple box and active site locations are marked as well. (b) Overlapped H-bond contact maps reveal three important sites
important for maintaining the active site structure integrity and substrate catalysis. (c) The CA-CA atoms of residues at the corresponding sites (1, 2
and 3) are depicted by yellow, green and blue lines respectively. For better visualization only strong H-bond connections have been displayed on the
structure.
doi:10.1371/journal.pcbi.1003155.g007
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macrostate. The free energy of a given macrostate is given by the

free energy functional:

G(Nnat,Nhb)~Uhb(Nhb){usolNhbzvnatNnat{

T Sconf (Nnat,Nhbjdnat)zSmix(Nnat,Nhb)
� � ðEq:2Þ

where vnat and dnat correspond to the enthalpy and entropy

associated with a native torsion. The corresponding values of vdis

and ddis have been fixed in prior works [63]. The total H-bond

energy, Uhb, is determined using a modified [50] empirical

potential [64], which the component entropy is linearly related

to. When a H-bond breaks, there is an enthalpically compensating

interaction with solvent that is described by usol. While not

explicitly specified in Eq. 1, the total conformational entropy, Sconf,

is appropriately attenuated by the probability of a distance

constraint to be independent to account for nonadditivity. The

probability for a distance constraint to be independent is

determined by Monte Carlo sampling of topological frameworks

that satisfy the order parameters. The mixing entropy term, Smix,

arises from the various combinations that can satisfy the order

parameters. The hydrophobic interactions are indirectly included

in the usol and vnat parameters as discussed in [37,65], i.e., H-bond

formation implicitly accounts for the hydrophobic contacts.

Critical to the work presented here, the mDCM provides a large

number of mechanical descriptions of structure referred to as

Quantitative Stability/Flexibility Relationship (QSFR). Flexibility

implies conformational diversity, whereas rigid regions are

structurally conserved. The mechanical origins of flexibility and

rigidity are directly linked to conformational entropy. Hence, these

thermodynamic and mechanical quantities combine to define

QSFR. To be precise, the free energy of a protein can be

expressed as a function of global flexibility h, where h is equal to

the average number of independent degrees of freedom divided by

the total number of residues. As h increases, the protein transitions

from a folded state to an unfolded state. The ensemble averaged

mechanistic or QSFR quantities of a protein are calculated using

conformations in the native basin of the protein.

Common QSFR metrics include the flexibility index (FI) and

cooperativity correlation (CC). FI is a local description of

backbone dynamics. Positive FI values quantify the number of

excess DOF within a region, whereas negative values quantify the

number of redundant constraints (Figure 4b). A region is said to be

isostatically rigid (meaning marginally rigid) when FI = 0. As

described above, CC plots identify all pairwise residue-to-residue

couplings across the structure. In both metrics, the presented

values represent the Boltzmann-weighted average across the native

structure free energy basin.

Model parameterization
The mDCM is parameterized by finding values of (usol, vnat, dnat)

that best reproduces the experimental Cp data using simulated

annealing method (Figure 8). We parameterize the model using

the Cp curve from B. cereus [66] and the evolutionarily closest

structure BS3. Focusing on our group of twelve class-A BL

proteins with well-conserved structures of the same function, we

have transferred the three adjustable parameters obtained from

above to all the other members, which is an approach we have

used previously [39,50]. With this fixed parameterization, we have

confirmed that mDCM correctly predicts all BL orthologs to have

a single peak in Cp and a two state folding/unfolding transition in

Figure 8. The best-fit heat capacity curve by mDCM is shown with usol = 22.61, vnat = 20.32 and dnat = 1.61, which are within normal
ranges established by our previous studies (solid line = model and symbols = experiment). The three fitting parameters are required to
calculate free energy of the protein accurately using Eq. 1.
doi:10.1371/journal.pcbi.1003155.g008
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free energy. Apart from these twelve BLs, an attempt was made to

calculate QSFR quantities on three other BL structures (1IYS,

1HZO, and 1E25), but their free energy landscapes were not two-

state, so they were excluded. This is not to say that having a

continuous transition is necessarily wrong; the model has been

shown to not give two-state behavior when its inappropriate (i.e.,

met-myoglobin) [63]. Nevertheless, in the absence of external

biophysical characterizations, which to the best of our knowledge

do not exist, it is impossible to know if the atypical behavior is real

or simply an artifact of pushing the parameterization too far, thus

they were excluded.

We have consistently demonstrated that while thermodynamic

quantities (i.e., Tm) are somewhat sensitive to parameterization and

input structure resolution, the mechanical FI and CC quantities

are mostly robust to parameter differences. Nevertheless, a single

parameter set across the dataset, guarantees that QSFR differences

only arise from structural differences. Also, results from our

previous works [37,39–41] have demonstrated that QSFR

properties are insensitive to parameterization, and have minimal

influence on CC and FI values. As such, the conclusions regarding

changes in QSFR properties are robust.

Dataset preparation
In this study, twelve different class-A BL structures are

investigated to provide a large evolutionary cross-section for

detailed analysis [35,67–77], while maintaining a feasible number

for data and visual assessment. Our dataset is based on a set of

high-resolution BL structures without any internal missing

residues. The resolution and R-values of all structures are

respectively less than or equal to 2.4 Å and 0.22. As provided in

Table 4, three out of twelve structures exhibit penicillinase activity

while the rest belong to one of the following classes: broad-

spectrum, extended-spectrum, carbapenamase, cephalosporinase

or carbenicillinase. Moreover, all enzymes are inhibited by

clavulanic acid and their structures are remarkably similar; the

pairwise a-carbon root mean square deviation (RMSD) ranges

from 0.73 to 2.57 Å (cf. Figure 9).

Phylogeny
For expanding sequential coverage, we collect approximately

1100 sequences after searching through the nonredundant protein

database using BLASTP [78]. The protein sequence culling

algorithm PISCES [79] is employed to filter sequences at 98%

mutual sequence identity cutoff. This reduced dataset, which also

includes twelve class-A BL protein sequences, is further aligned by

MUSCLE [80] followed by phylogenetic tree construction using

maximum-likelihood, meaning the phylogenetic tree shown in

Figures 3 and 6 is purely derived from sequence information. The

twelve BL protein sequences span across the evolutionary tree,

which provide a robust structural coverage as well. However, we

arrange these twelve BL sequences independent of the larger set,

using both sequence and structural information by Protein Align

tool in MOE [81], to achieve better visual comparison across our

set.

Hydrogen bond network
H-bond density for a residue i is defined as:

Di
hb~

PNres

j

E
i,j
hb

PNres

j

N
i,j
hb

ðEq:3Þ

where E
i,j
hb is the hydrogen bond energy between residue i and j,

and N
i,j
hb is the number of hydrogen bonds formed between residue

i and j. The summation of energies divided by total number of

hydrogen bonds provides hydrogen bond density at per residue

level (Figure 7a). The hydrogen bond network contact map, shown

in Figure 7b, is an overlapped network of all twelve BL proteins.

The residue positions on the network follow multiple sequence

alignment as described above. As such, identical donor and

acceptor residue pair positions across the dataset are achieved for

easy visual network assessment of hydrogen bond energies.

Relating physiochemical and clustering patterns
To determine the statistical significance of our results, we have

developed a cluster matching score, S. In the case of the

evolutionary patterns, the clusters are defined by the various

colors in the phylogeny (cf. Figure 3), which were determined

using a constant cut-level through the rectangular dendrogram.

The matching score is calculated using the following equation:

S~
X

i

X
jwi

Ri,jz
X
kwi

(1{Ri,k)

" #
ðEq:4Þ

where Rx,y is the correlation between a vector of physiochemical

properties associated with protein x and y. The equation has been

developed to evaluate both intra-cluster similarities (all pairs i,j)

and inter-cluster variability (all pairs i,k). That is, random data

would not provide a good score because the intra-cluster on the

left would be negligible, whereas the inter-cluster term on the right

would be negligible if the data were well conserved throughout the

family. Conversely, a perfect score, S = 66, would occur when all

Ri,j = 1 and Ri,k = 0, which is defined by the number of protein

pairs in the dataset. For example, in the case of FI, the vectors are

defined by all values of FI for residues present across the 12

structures, meaning alignment positions with gaps are ignored.

The same is done for the residue H-bond density quantity.

Residue charge and residue pKa shifts are very similar, but the only

Figure 9. Dataset similarity. All-to-all percent sequence identity
(blue) and structural RMSD (red, in units of Å) are provided to highlight
(dis)similarity.
doi:10.1371/journal.pcbi.1003155.g009
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difference is the vector length is only for the subset of titratable

residues. In the case of the NxN H-bond network and CC plots, the

vector length is N(N-1)/2. The electrostatic network is also N6N;

however, N is a relatively small number based on the residues

identified within the active site electrostatic network. Because the

size of these vectors is small, we also wanted to consider an

alternate Rand Measure (RM) [82] that only considers set identity,

which we have with good results in alternate work [83]. In this

case, the Rx,y correlations are simply replaced with RM, which also

scales between zero and one, and gives nearly identical results.

Statistical significance of the match scores is determined by

comparing the real calculated score, Sreal, to an ensemble of

random values, Sshuffle, where the cluster identities have been

randomly shuffled. We perform a z-test on each of the property

comparing Sreal to the Sshuffle distribution. The corresponding p-

values are provided in Table 3. Statistical significance is assumed if

the p-value is less than 0.05, meaning it is highly unlikely to obtain

Sreal from the randomized distribution. This indicates that the

matching between the physiochemical properties (i.e., intra-cluster

conserved properties and systematic inter-cluster differences) and

evolutionary groups is statistically significant and represents true

sequence/property relationships. Relationships with environmen-

tal condition and antibiotic specificity patterns are calculated in

the exact same way. The clusters for the former are defined above,

whereas the antibiotic specificity clusters are use the Bush and

Jacoby classification scheme [17,84] (cf. Table 4).
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