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ABSTRACT The study of commuting mode choice is crucial since driving, with all its associated environ-
mental and economic consequences, is the United States’ most popular mode of transportation due to urban
sprawl, priority to road construction and America’s love affair with the automobile. More attention needs
to be paid to sustainable modes such as public transit and walking. The built environment is expected to
have an impact on commuting mode choice. Built environments with higher density, diversity, intentional
design, destination accessibility, and shorter distance to transit (collectively known as the 5 Ds of the
built environment) are hypothesized to lead to more sustainable mode choices, including public transit
and walking. In this paper, we evaluate the impact of built environment variables on commuting modal
split, including the four modes of public transit-bus, public transit-rail, walking, and driving. The study
is conducted in Mecklenburg County, North Carolina, at the geographic level of census block groups in
year 2015. Given the complexity of relationships in the built environment-travel behavior subject, the random
forest method is used to predict aggregated commuting mode choice. Random forest is employed as it
is capable of capturing nonlinear relationships and is not constrained by limitations in other widely used
methods, such as multinomial logistic regression. After predicting the commuting mode shares, SHAP values
(SHapley Additive exPlanations) are used to evaluate the impact of the built environment on commuting
mode choices. As an advanced machine learning method, SHAP values adds explainability to the model. This
method resolves the known limitation of machine learning methods as being ‘‘black boxes” and converts
them to “white boxes” by providing interpretability. They provide insights into both the direction and
magnitude of the relationships. Thanks to its rigorous ML-based design, our study helps to solidify the state
of knowledge with strong evidence that block groups with higher degrees of the 5Ds lead to more choices
of public transit and walking modes. We discuss urban policy implications of this study.

INDEX TERMS The built environment, commuting mode choice, modal split, random forest, SHAP values,
feature importance.

I. INTRODUCTION

A. CONTEXT AND OBJECTIVES

The transportation system significantly affects social, eco-
nomic, and environmental sustainability in many developed
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and developing countries due to rapid urbanization and
motorization [1], [2]. According to the 2017 National House-
hold Travel Survey [3], 42.3% and 39.8% of trips were
made by cars and SUVs/trucks/vans, respectively, in the
United States (US). On the other hand, only 11.5% of
trips were made on foot or bicycle, 2.6% by public and
para-transit, and 0.7% by shared mobility services. This
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overwhelming use of motorized vehicles is causing traffic
crashes, congestion, and emissions, influencing land-use pat-
terns, and thereby negatively affecting society, economy, and
environment [4].

To address these problems, government agencies have
been taking strategic actions by building safer transporta-
tion infrastructure, improving system reliability and con-
nectivity, expanding people’s accessibility, and expanding
zero-emission vehicle usage [5]. In this context, pertinent
policies undertaken by state and local governments to pro-
mote public and active transportation and to curb private
vehicle use could uphold government’s strategic vision. This
study aims to investigate the impacts of the layout of the built
environment and people’s socioeconomic factors on travel
mode choice behaviors of people in Mecklenburg County,
North Carolina, US. Specifically, we measure behaviors
aggregated to geographic neighborhoods with the percentage
of neighborhood residents using a particular mode of trans-
port for their commute to work. We analyze this so-called
modal split using the Random Forest (RF) machine learn-
ing technique. Results from this study may draw significant
insights and guide policy makers to formulate appropriate
actionable interventions to achieve a more efficient and more
sustainable transportation system in cities. The following
three-fold research questions are formulated to understand
the non-linear associations between the built environment,
people’s socio-economic factors, and the modal split:

1) What are the impacts of the built environment through

its various dimensions on the modal split?

2) What are the impacts of socio-economic factors on the
modal split?

3) What is the relative importance of independent vari-
ables in predicting the modal split in geographic
neighborhoods?

Driving comprises the biggest share of travel mode choices
in the United States at large and also in the preponder-
ance of more local communities due to rather uncontrolled
development patterns. This leads to social, economic, and
environmental problems such as social exclusion, increased
costs of urban infrastructure, and environmental pollution.
As a result, novel approaches to practice in urban planning
and design such as smart growth, new urbanism, transit-
oriented developments, and sustainable design have emerged,
aiming to influence people’s travel behaviors. Their main
objective is to reduce travel demand and consumption and
to stimulate the choice of more sustainable modes, such as
public transit, walking, and biking, through built environment
interventions. Known as the 5Ds of the built environment,
these interventions pertain to a suite of built environment
properties, including density, design, diversity [6], distance to
transit [7], and destination accessibility [8]. They have been
conceived as a comprehensive set of actionable measures over
a period of about two decades of research works studying
the impact of the built environment on travel behavior. The
main contention for the advancement of new urban planning
and design practices is that built environment variables that
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align with the 5Ds reduce travel consumption and its negative
externalities. Given the considerable investments required to
implement built environment interventions, such as compact
developments, public transit infrastructures, and walkable
design, it is of paramount importance to empirically assess the
impact of these built environment variables on travel behavior
outcomes beforehand.

To date, numerous studies have investigated the impacts
of the built environment on different aspects of people’s
mobility and travel behaviors (e.g., [7], [9], [10], [11]). Most
of these studies have used statistical and econometric models
to gauge these effects [12], [13], [14]. The main problem
these studies encounter is that they fail to capture the complex
functional relationship between the built environment and
travel mode choice, especially non-linearities, as noted in
the literature [15]. As a new paradigm of scientific research
with robust analytical power, machine learning (ML) tech-
niques can handle the complex and non-linear associations
between predictors and response variables [16], [17]. A lim-
ited number of studies have used ML approaches to unravel
the non-linear associations between the built environment and
people’s travel behaviors [18], [19], [20]. However, this small
body of literature has primarily sought to solve predictive
problems and has omitted causal inferences. These studies
still suffer from the ‘“‘black box’’ condition of ML models,
which stipulates that we cannot learn about the underlying
connections between the different variables used in the model
and gain semantic justification from fitted parameters. Hence,
it is critical to improve ML from a “black box™ to a “white
box.” Even when studies purport to investigate causal infer-
ence while using ML, they use methods such as permuta-
tion [21] or filter and wrapper methods [22], which only
provide insight into the ranking of features, while overlooking
the importance of the direction of relationships. Considering
the limitations of the extant literature, this study seeks to
identify the factors that influence commuting mode choices
using ML techniques and to evaluate the specific impact of
the dimensions of the built environment on commuting mode
choices using the SHapley Additive exPlanations (SHAP)
evaluative values. This advanced method stands out by its
ability to inform us about the relationships between the
predictors and the outcome variables in terms of both the
magnitude and the direction of the relationships.

B. BUILT ENVIRONMENT, MOBILITIES AND TRAVEL
PATTERNS

It has been argued that the layout of the urban fabric,
which is commonly referred to as the built environment, has
a structural role in influencing people towards active and
non-motorized transportation as well as public transporta-
tion, and therefore induces people to refrain from driving.
Many studies to date have already investigated the impacts
of the built environment on people’s travel behavior patterns.
A brief discussion of the extant literature is provided here to
understand these relationships.
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1) DENSITY

Most researchers investigating the links between the built
environment and travel mode choice have used density to
measure the built environment. These studies have found that
density significantly influences people’s travel mode choices.
For example, a study in the Washington metropolitan area
investigated the impacts of the built environment on travel
mode choice [12]. Using a multilevel integrated multinomial
logit (MNL) model and structural equation model (SEM),
it was reported that residential and employment density
increase transit use, walking, and cycling. High population
and employment densities at both trip origin and destina-
tion increase transit use and decrease solo car driving sig-
nificantly [23], [24], [25]. Similarly, compact development
(i.e., high density) encourages walking, cycling, ride-sharing,
and transit use and discourages car reliance for both work
and non-work trips (e.g. trips to the bank, or to a dentist)
compared to sprawling development [26], [27], [28]. Ana-
lyzing information from the 98 largest cities in India, Ahmad
and Puppim de Oliveira [29] reported that private transport is
prominent in small and medium-sized cities, whereas people
in large cities mainly depend on public transport.

Although many researchers have found a significant
impact of density, McKibbin [30] only found a moder-
ate influence of population and employment densities on
increased walking and cycling in the greater Sydney region,
Australia. Frank and Pivo [31] have determined threshold
employment (i.e., 75 employees/acre) and population (i.e.,
13 persons/acre) densities to encourage walking and transit
use and discourage car use. Therefore, high employment den-
sity (20 to 75 employees per acre or over 125 employees per
acre) significantly shifts travel mode choice to walking and
transit use from the car. Similarly, high population density
(>13 persons/acre) significantly persuades to shift from car
driving to walking and transit use.

Overall, studies highlight the importance of population and
employment density to describe travel mode choice. High
population and employment densities reduce car travel and
increase walking, cycling, and public transit by reducing
travel distance. However, threshold population and employ-
ment densities are needed to increase walking, cycling, and
transit use and non-linearities exist.

2) LAND-USE DIVERSITY

A considerable number of studies have also used land-use
diversity to evaluate the influence of the built environment
on travel mode choice. They have found that greater diversity
in land use (i.e., lower land-use segregation) significantly
increases walking, cycling, and transit use and decreases car
use by reducing travel distance [23], [25], [28]. Besides, mul-
tifamily housing reduces solo driving and increases transit
use considerably more compared to single-family housing.
In contrast, vacant and undeveloped lands are associated with
fewer car trips, while commercial land uses produce more car
trips [32].
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Some studies also used the job-housing balance to measure
the mixing of land uses. These studies reported that a high
job-housing balance significantly increases walking, cycling,
and transit use and decreases car use by reducing travel
distance [33], [34]. A higher job-housing balance encour-
ages people to use non-motorized modes of transportation by
placing workplaces, service centers, and convenience retail
centers close to residences.

Collectively, studies outline the critical role of land uses on
travel mode choice. The evidence so far presented advocates
that mixed land uses significantly increase walking, cycling,
and public transit and reduce car use.

3) DESIGN

Studies have assessed the role of street network connectivity
on travel mode choice as a measure of the design dimen-
sion of the built environment. They have found a significant
influence of this factor. The extant literature shows that grid
road networks, short block size, high intersection density,
low prevalence of T-intersections, and cul-de-sacs signifi-
cantly reduce car trips by increasing accessibility to activity
locations [12], [24], [25], [26]. Moreover, pedestrian-oriented
design (i.e., connected sidewalks and pedestrian paths, access
to transit) increases walking and transit trips and decreases car
trips.

Researchers have also observed that a higher street density
tends to increase the cycling tendency of people around tran-
sit stations [24], [28], although bicycle density is the most
influential factor. Researchers [29] also reported a dearth
of non-motorized transport in many parts of cities due to
the lack of supporting infrastructure. They argued that the
provision of dedicated walking and cycling lanes would act
as a catalyst to increase active travel. Thus, a higher number
of walking facilities (e.g. wide footpaths, street lights) and
cycling facilities (e.g., shared bike services) can increase ride-
sharing, transit, walking, and cycling trips [6], [35].

Studies referenced above describe the influence of street
network connectivity on travel mode choice. In a word, one
may expect that grid street patterns, smaller blocks, and high
availability of walking/bike paths can significantly increase
walking, cycling, and public transport and decrease car use.

4) DESTINATION ACCESSIBILITY

Destination accessibility indicates the ease of access or prox-
imity to destination [11], [33]. Accessibility is measured
using distance to destinations or the number of jobs/facilities
that can be reached easily. Some studies have used accessibil-
ity to destinations to evaluate the influence of the built envi-
ronment on travel mode choice. They measure accessibility to
destinations using transport network connectivity. Higher net-
work connectivity indicates a higher level of accessibility to
destinations. These studies mentioned that better accessibility
to destinations increases walking, cycling, and transit use
compared to car use [33], [34]. Accessibility is particularly
influential on the use of slower and non-motorized modes
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of travel for which the friction of distance exerts more of a
barrier effect to mobility.

5) DISTANCE TO TRANSIT

Researchers have emphasized how critical distance to points
of access to transit (stations and stops) is in the relation-
ship between the built environment and travel mode choice.
They have found that the distance between activity sites and
transit stops is negatively associated with walking, cycling,
and public transit use and positively associated with car use.
For example, a long distance to transit stops increases car
use, while decreasing walking, cycling, and transit use [12],
[32], [36]. Conversely for short travel distances [33], [37].
A higher number of bus stops tends to enhance the use of
public transportation, but also increases the cycling tendency
of people around transit stations [24], [28].

The above studies highlight the important role of distance
to transit on household travel mode choice. In summary, short
travel distance to transit systems reduces car use and increases
other modes. Moreover, high density and mixed land use
reduce car use and increase walking and cycling by reducing
travel distance to transit stops.

6) SUMMARY

In a nutshell, the factors of the built environment significantly
influence the travel mode choice behaviors of urban popula-
tions. The extant literature shows that high population and
employment density, mixed land use, and public transport
options encourage people towards sustainable transportation
(i.e., high use of public transit, cycling and walking, and
low use of automobiles) compared to low density and sin-
gle land use settings. Higher connectivity and quality of
the sidewalks, sidewalk density, bike infrastructure, transit
facilities, closer integration with public transportation, and
pedestrian-friendly street designs increase walking and public
transit trips. Similarly, proximity to public facilities and ser-
vices (e.g., jobs, parks, schools, hospitals, recreational facil-
ities) increases the walking, cycling, and e-biking tendency
of urban residents. Thus, appropriate design of the built envi-
ronment (i.e., effective sidewalks, separate and protected bike
lanes, high density, mixed land uses, and better connectivity)
could be an effective strategy to increase active and public
transport use and reduce solo driving.

C. SOCIO-ECONOMIC FACTORS, ATTITUDES,
SELF-SELECTION, AND MODE CHOICE

A large number of studies have also investigated the influ-
ence of people’s socio-economic factors, attitudes, and
self-selection on household travel mode choice. Most of these
studies mentioned that various socio-economic and demo-
graphic factors significantly influence people’s travel mode
choice behaviors. For example, being male, younger, elderly,
having low education, and being in the low or middle-income
strata would be more associated with walking, cycling,
e-biking, and public transit, while employed workers are less
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likely to walk due to longer trip lengths and appreciation for
speed to reach the workplace on time [35], [38], [39], [40].
In contrast, high-income people, households with children,
and early residents of the city are more prone to travel by
car [39], [40], [41].

However, researchers have also observed that affluent peo-
ple frequently participate in physical activities (e.g., walking,
cycling) for the health benefits of physical exercise [35].
Thus, the attitudes and preferences of individuals also influ-
ence their travel decisions [42]. De Vos et al. [43] underscored
the significance of attitudes and residential self-selection on
travel and residential decision-making. Analyzing empirical
data, this study found that despite greater travel distances and
times, some people are interested in living in suburban areas
due to their tolerance for greater travel efforts. Accordingly,
they self-select their residential neighborhoods and travel
with their preferred mode of transportation. Researchers [40]
also mentioned that socio-economic considerations equally
contribute to explain people’s mode choice behaviors. To sum
up, socio-economic features, attitudes, and self-selection
have significant impacts on travel decisions.

Also, it has been found that perceived safety influences the
travel patterns of people [39], [44]. People are reluctant to
let their children walk or bicycle to school due to fear of
potentially hazardous situations they could encounter [39].
Thus, increasing the number of police officers, particularly
at night can significantly increase people’s active travel [45],
as could well-lit and unobstructed public spaces. Com-
fort and convenience also influence people’s travel mode
choices [46]. Thus, psychological factors have stronger
effects on mode choice behaviors compared to people’s socio-
economic attributes [47].

To sum up, people’s socio-economic and demographic
attributes, preferences, and perceived safety significantly
influence mode choice behaviors. Thus, estimating the
impacts of the built environment ignoring socio-economic
factors may overstate the influence of the built environment
on travel mode share.

D. TRAVEL FACTORS AND TRAVEL MODE CHOICE
A considerable number of studies also found a significant
influence of travel factors on travel mode choice. For exam-
ple, higher traffic speed (i.e. more than 30 miles/hour) is
associated with less walking and cycling to school [37]. Peo-
ple’s propensity to use transit is reduced in case of a higher
number of transfers, longer travel time, walking time to stops
to catch the bus or train, and waiting time [23], [48], [49].
Researchers [36], [50] have found that fuel price and parking
costs have a significant influence on vehicle type choice.
Households switch from large vehicles to small, more
fuel-efficient vehicles to reduce overall travel costs. Further-
more, people often switch to car use due to increased transit
travel costs [23], [51]. It is also well known that spikes in gas
prices lead to changes in modal split away from driving alone.
The availability of public transportation and restrictions on
car use can effectively promote active transportation in the
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population [52]. Policies and strategies to enhance people’s
accessibility to public transportation, to reduce travel time
and transfer distance, to create a comfortable travel environ-
ment, and to develop an integrated fare system can achieve
a more sustainable transportation system [53]. Thus, travel
factors have significant impacts on determining modes and
mode shares for daily travel purposes.

From the above discussion, a number of observations can
be made. Empirical studies support that the built environment
has a significant impact on travel mode choice. High density,
mixed uses, high street network connectivity, accessibility,
and shorter travel distance significantly reduce car travel and
increase walking, cycling, and public transport use. More-
over, socioeconomic, self-selection, and transport factors also
significantly influence mode choice. Therefore, excluding the
latter considerations may establish a spurious relationship
between the built environment and travel mode choice.

Il. DATA AND STUDY METHODS

A. DATA

Data on commuting modal split are sourced from the U.S.
Census Bureau’s American Community Survey (ACS) at the
geographic level of census block groups in Mecklenburg
County [54]. Four travel modes are considered, namely bus
transit, rail transit, walking, and automobile. The latter mode
encompasses both car driving and ride sharing. The streetcar
mode and the pooled mode of taxicab, motorcycle, bicycle,
or other means are excluded from the analysis because of their
low frequency and higher margin of errors in the ACS dataset.
Built environment variables, including the bus route density,
rail transit proximity, street intersection density, and land-use
mix using an entropy index, are calculated in ArcGIS using
shapefile data collected from the Mecklenburg County GIS
Center [55]. Data on job accessibility are collected from
the U.S. Census Bureau’s Longitudinal Employer-Household
Dynamics (LEHD) data source [56]. Data for additional
factors, such as commute time, population density, median
age, median gross rent, and percentage of renter-occupied
dwellings, are sourced from the ACS [57].

B. STUDY AREA

The study area is Mecklenburg county, North Carolina, and
the year of study is 2015. The study is carried out at the
geographic level of neighborhood-representing census block
groupings; there are 546 block groups in the county. As the
second most populous county in NC, with a population of
1,128,945 in 2020, Mecklenburg County has a strong eco-
nomic profile in comparison with the rest of the state and
the nation. With a value of $65,244, its per capita personal
income (PCPI) in 2020 was 129.7% of the state average
and 110% of the national average. In addition to its sig-
nificance to the state’s economy, it has grown significantly
during the last decade. Since 2010, its real gross domestic
product has increased at a compounded annual rate of 3.1%,
which is higher than the 1.3% and 1.6% values for the
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state and for the country, respectively (Bureau of Economic
Analysis, 2022). The county’s rapid economic expansion
increased its attractiveness and contributed to a predicted
16% increase in population between 2010 and 2021 [58].
Until fairly recently, Mecklenburg County’s seat, the city
of Charlotte, has been one of the conventional car-oriented
monocentric American cities with urban sprawl develop-
ments [59], [60]. Due to the county’s growing economy and
population, strategies for integrating land use and transporta-
tion have been developed over recent decades. Examples
include the 2030 Transit Corridor System Plan, which was
adopted in 2006, and the 2025 Integrated Transit/Land-Use
Plan, which was approved in 1998 [61]. The main objective of
these plans has been to integrate the residential and economic
activities embedded in land uses with transportation through
5 transit corridors and stimulate growth (see Figure 1). These
growth transit corridors are planned to connect different parts
of Mecklenburg County by multiple transit modes such as
Bus Rapid Transit, Light Rail, street car, as well as driving.
These plans have led to urban structural changes and the
emergence of new secondary employment centers in different
parts of the city, such as the University City area to the
northeast of the CBD and the Ballantyne and South Park
centers to south of the county. These changes have evolved
the city from a monocentric structure towards a polycentric
one. For the implementation of these transit plans in the city
of Charlotte, significant investments in public transportation
has taken place, such as the construction of the first phase of
the Blue Line of the Lynx light rail system with a finished
cost of approximately $462.7 million. This line of light rail
opened in 2007, running from the city’s center to its southwest
through 15 stations. A more recent extension at an estimated

" [@ Growth Corridor
EWedge
W Other Jurisdiction

[ Center City \

O Mixed Use Activity Center

M Industrial Center

Charlotte-Mecklenburg Planning Department, April 2010

FIGURE 1. Transit corridors in Mecklenburg County [62].
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cost of about $1 billion opened to the public in 2018 from the
city center to the University City area.

As part of the new urban structural changes, the new
transit corridors resulted in the growth of new compact and
mixed-use developments such as transit-oriented develop-
ments (TOD) in different parts of the county, including the
university area, the outer parts of the city center, along the
LYNX Blue Line and in the south of the county. Mainly
occurring in the proximity of transit stations, the new mixed-
use developments, including office, residential, and retail
spaces, are anticipated to promote the use of public trans-
portation by improving accessibility and bringing trip ends
like homes and workplaces closer together.

The year 2015 is selected for our analysis as it is about
a decade after the establishment of light rail in Charlotte
(LYNX Blue Line). A decade is a good time for built envi-
ronment and urban structural changes to form in response
to transit investments and for travel behaviors to settle into
a new equilibrium. Charlotte’s land development activities
had also regained vigor after the sharp downturn of the Great
Recession. In summary, given the new built environment and
transportation features in Mecklenburg county such as the
availability of multiple transit options (bus and light rail),
the polycentric structure of the urban area and improved
access to multiple employment centers, increased diversity of
mixed use developments, enhanced walkable urban design,
and denser urban form, this county is a suitable case for
investigating the impact of the factors of the built environment
on commuting modal choice behavior.

C. STUDY METHODS
Data-driven methods like ML are increasingly common in
a variety of fields including transportation, as a result of
recent improvements in the availability of fine-grain data
and of enhanced computational power. Because ML infers
the mathematical functions from the data, it is less reliant
on subject-matter expertise in a specific field than statistical
models that are primarily grounded in theoretical underpin-
nings. In contrast to statistical models conventionally used
in the transportation literature, ML input data require less
experimental design. ML has several other advantages over
conventional statistical models in several ways. It is not
affected by limiting assumptions exhibited by many statistical
models, such as the Independence of Irrelevant Alternatives
(ITA) in multinomial logistic regression as the most com-
mon method in travel mode choice studies, and normality
and linearity in other regression-based techniques. Complex
phenomena, such as the nonlinear between variables in the
built environment-transportation topic, can readily be studied
explicitly via ML. ML has been demonstrated to have better
predictive accuracy than statistical modeling and is indepen-
dent of prior parameters.

Like other application domains, transportation research
has increasingly turned its attention to ML to enhance its
analytic performance and empirical validity [20], [21], [63];
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however, the majority of this literature employs ML to solve
prediction problems. Investigating the links between compo-
nents and drawing causal conclusions are not given enough
attention in the literature. A very limited number of studies
have investigated causal inference in travel behavior studies
using machine learning. For example, Zhao et al. [64] uses
a number of ML models and employs the tool of feature
importance to investigate the relationships between factors.
However, they only investigate the feature importance and
ranking of predictive factors, regardless of the direction or
magnitude of the relationship.

In this study, we use Random Forest (RF) to estimate
the commuting modal split in block groups of the study
area, Mecklenburg County, NC. In RF modeling, based on
the bagging method, an ensemble of multiple regression
trees is generated in order to optimize the model perfor-
mance [65]. RF is chosen as an ML predictive model because
it captures the non-linear relationships between predictive
factors and commuting mode shares, which is common in
socio-economic and behavioral subjects. Partial Dependence
Plots (2) show evidence of meaningful non-linear relation-
ships between variables in our data. This is the case for mul-
tiple variables —both built environment measures and control
variables, and in ways that defy handling via conventional
mathematical transformation. RF has also proved to be very
effective at modeling data and to routinely outperform other
ML methods [64], [66], [67]. In our RF implementation,
70% of the data is used for training the model, and the remain-
ing 30% is used for out-of-sample evaluation of the fitted
model. 100 trees are used for the forest ensemble. The model
is implemented using the random forest regressor available in
the sklearn library.

In our RF model, we have four commuting modes: public
transit-bus, public transit-rail, walking and car driving. All
four mode shares are modeled jointly. The outcome variables
are in share format to reflect the relative choices in block
group neighborhoods (Table 1). Our independent variables
measuring the built environment are land-use mix using an
entropy index, bus route density, population density, street
intersection density (as a proxy for urban block size), dis-
tance to the closest light rail station, and job accessibility.
These variables are calculated with geospatial analysis soft-
ware ArcGIS using shapefile data, as explained in an earlier
study [10]. Since larger block groups may naturally include a
larger variety of land uses, they would have higher land-use
mix values. In order to control for this bias, the land-use
mix values are normalized by dividing by each bloc group’s
land area. These built environment variables measure each
of the 5 Ds of the built environment. Table 2 contains the
descriptive statistics of independent variables used in this
study for predicting commuting mode shares in block groups.

Once the RF model is fitted, in order to investigate the
causal relationships, including the magnitude and direction
of the impacts, we use shapely values, which are in the
class of additive feature importance measures. Shapely val-
ues are model-agnostic, as they require the output of the
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FIGURE 2. Partial dependence plots.
TABLE 1. Descriptive statistics of dependent variables (n = 546 block importance techniques such as the mean decrease in impu_
roups). . .
groups) rity or permutation of features [68], [69]. However, the
Dependent Variable Min | Mean | Standard Deviation | Max issue with these techniques is that .they calculate the fc?ature
Driving (%) 35.11 | 93.98 | 8.55 100 importance for all outcome variables together, without
Walking (%) 0 213 |59 64.69 providing insights into the impacts on each outcome in
Public transit-bus (%) | 0 3.68 6.11 36.04 .
Public transit-rail (%) | 0 021 T 088 843 particular. Shapely values, on the other hand, convey the het-

erogeneity of impacts of features over different outcome vari-
ables. In addition to the importance, the shapely values show

prediction model and observed values, regardless of the ML the sign of association between the features and outcome
model type. Other studies have typically employed feature variables.
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TABLE 2. Descriptive statistics of independent variables (n = 546 block groups).

Independent Variable Min Mean Standard Deviation | Max
Land-use mix (normalized entropy index) | 0 0.001 0.001 0.009
Intersection density (units/mi2) 9.83 75.00 37.68 255.31
Jobs accessibility (jobs) 0 772 1531 12,768
Bus route density (mi/ mi2) 0 3.40 4.57 47.10
Population density (population/mi2) 25.69 3148.89 2398.12 24951.76
Distance to rail line (ft) 0 27613.69 | 20838.45 97990.56
Renter-occupied housing (%) 0 38.16 24.68 100
Commuting duration (mins) 8.72 26.45 5.17 51.93
PCA component for control -48.76 | 0 30.12 62.39
Median age 10.8 36.59 7.61 80.5
Median gross rent ($) 253 1066.74 337.60 2719

TABLE 3. Eigenvalue and explained variance by component.

Eigenvalue | Variance (%) | Cumulative variance (%)
Component 1 | 2.2 71.9 71.9
Component 2 | 0.6 19.9 91.9
Component 3 | 0.2 8.1 100

For a subset S from the set of all features F, a model is
trained in the presence and absence of feature i and assigns
an importance value to that feature based on the effect on
prediction. Training is repeated on all possible subsets S, and
the average shapely values for each feature are calculated as
follows [70]:

D= >

SCF\{i}

ISIFT =151 =1

!
IF|! ) Usuii (esugip) — fs(xs)l

where the term in the bracket represents the comparison
between the prediction for the current feature subset S in the
presence and absence of feature i. [70] further proposes a
unified framework, SHAP (SHapley Additive exPlanations),
to calculate shapely values. SHAP values are shapely values
of a conditional expectation function of the original model
that measure the change in the expected model prediction
for a specific feature. Larger SHAP values are indicative of
a stronger impact of the feature. Based on Shapley values
from game theory, this method provides both global and local
explanations of the feature impacts. The local interpretability
feature of SHAP provides the feature importance for each
individual prediction. The feature importance is implemented
here using the SHAP library.

Figure 3 illustrates our conceptual research design and
methodology in four major steps and multiple substeps.
Grounded in the extant literature on 5D principles and com-
muting modal choice, we identify relevant measures of the
built environment. Next, the outcome variables and control
factors are selected and organized in the block group dataset.
Third, the RF ensemble model is trained and tested. Lastly,
SHAP values are calculated and discussed.

Ill. RESULTS
We predict the shares of four transportation modes using
the RF method. Table 4 shows the model’s predictive
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performance, with a Mean Absolute Error (MAE) of 0.02 and
a Root Mean Squared Error (RMSE) of 0.04.

After fitting the RF model and obtaining predictions,
we compute the feature importance using the SHAP
library [70]. Figure 4 shows the local impacts of features
for each transportation mode share. In these figures, each
point is an instance (block group), and its color shows the
value of that instance. The horizontal axis indicates the SHAP
values of instances for each feature. For example, for the
feature of median gross rent in Figure 4a, low values (blue
dots) are associated with higher predicted values for the bus
mode share (negative contribution to the model predictions).
As another example, for the feature of renter-occupied hous-
ing percentage, high values (red dots) are associated with
higher predicted values for the bus mode share (positive
contribution to the model predictions). Moreover, features
are sorted on the vertical axis based on their global impor-
tance (high to low from the top down). SHAP enhances the
transparency of ML models by providing interpretability. It is
also worth noting that it shows how each observation (block
group in this study) contributes to the model predictions and
reveals the heterogeneity of these impacts, which may be of
great value for specific purposes. For example, in figure 4a
socio-demographic factors and commuting duration have
more heterogeneous impact on bus commuting share than
renter-occupied housing percentage. In this figure, we can
infer more homogeneous impact of renter-occupied housing
percentage as points are located closer together. In addition,
this plot indicates that two block groups with low commut-
ing duration values are strongly associated with lower bus
commuting share. These two block groups have the strongest
contribution to the positive relationships between the com-
muting duration and bus commuting share, among all other
block groups with short commuting duration.

In addition to the local interpretations, we can look into
the average SHAP values to learn about the overall impact of
each feature, which is the main purpose of this study. Figure 5
shows the global impact of features by the four commuting
modes. In these figures, the red color depicts the positive
impact and the blue color depicts the negative impact. The
horizontal line (SHAP values) indicates the magnitude of
impacts.
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FIGURE 3. Research design flowchart.

TABLE 4. Random forest model evaluation metrics.

MAE MSE RMSE Explained Variance Score | Mean Squared Log Error | Median Absolute Error | R"2
0.02378 | 0.001927 | 0.03895 | 0.3301 0.000982 0.01502 0.3193

The impact of the built environment on commuters’ share population density, higher job accessibility, and higher inter-
of bus transit mode is depicted in Figure 5a. Block groups section density, greater proximity to rail transit, exhibit a
with a higher land-use mix, denser bus routes, a higher larger share of the bus mode. In terms of the control variables,
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FIGURE 4. Importance of factors to influence commuting mode shares.
FIGURE 5. Feature importance to determine commuting mode shares.

lower median gross rent is associated with a higher share
of bus mode. Additionally, block groups with a higher pro-
portion of renter-occupied homes have a higher share of the

bus mode. The graph also demonstrates that commuters who
choose the bus have longer commutes. Furthermore, among
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the 5D variables, the land-use mix, rail transit proximity,
and bus route density play the most important roles in bus
ridership. However, socio-demographic and economic factors
are more influential on the bus ridership share than the built
environment factors.

Figure 5b illustrates how the built environment affects the
share of commuters’ use of the rail transit option. Block
groups with greater proximity to light rail, street intersec-
tion density, population density, bus route density, job acces-
sibility, and land-use diversity have higher shares of light
rail mode choice. Block groups with higher proportions
of renter-occupied housing and higher median gross rents
demonstrate larger shares of rail transport mode choice,
according to the average SHAP values. Also, a higher share
of light rail transit is linked to lower commute times. The
distance to rail variable is by far the most influential factor
on the rail commuters share, followed by socio-demographic
factor, median gross rent, and commuting duration.

The average SHAP values for the walk commuting mode
(Figure 5c) demonstrate that walking is more prevalent in
locations with higher densities of bus routes, higher degrees
of jobs accessibility, smaller street blocks, higher land-use
mixtures, higher population densities, and closer proximity to
light rail. Additionally, just like with the light rail mode, more
people walk to work in locations with higher proportions
of renter-occupied housing and higher median gross rents.
Again, similar to the light rail option, commuting duration
is negatively associated with the walking mode share. The
density of bus routes has the largest impact on the share of
walkers, followed by the commuting duration and rail transit
proximity.

Driving (Figure 5d), on the other hand, exhibits contrasting
patterns from the three forms of transportation that have
been discussed so far—bus, rail, and walking. Block groups
located further from light rail stations, with lower densities
of bus routes, less diverse mix of land uses, lower popula-
tion densities, lower jobs accessibility, and lower intersection
densities, and showing larger block sizes have larger shares of
driving mode choice. Again, contrary to the previous sustain-
able modes of public transit and walking, areas with a lower
percentage of renter-occupied housing are associated with a
higher driving mode choice. The median gross rent variable
has a positive relationship with driving mode share, which
shows that areas with higher rents have more driving share.
Lastly, longer commutes are associated with a higher driving
mode share. Among all the variables, the socio-demographic
factors and median gross rent have the highest impact on the
prevalence of driving.

IV. DISCUSSION AND CONCLUSION

Given the persistent and entrenched car dependency in the
United States and its ensuing problems, such as social exclu-
sion and disparities, high cost of urban infrastructures, and
environmental issues, it is critical to investigate the travel
mode choice behavior of urban residents. The built envi-
ronment is expected to impact travel behavior. Specifically,

VOLUME 11, 2023

built environments with higher degrees of the 5Ds including
density, diversity, design, destination accessibility, and short
distance to transit are hypothesized to encourage people to
choose more sustainable modes (i.e., public transit, especially
rail transit, and walking). Given the importance of these
relationships to policy making, in this study, we reassessed
the impact of the built environment variables on commuting
mode shares apprehended via the four modes of bus, rail,
walking and driving. The impact was evaluated in Mecklen-
burg county, NC, in 2015, at the geographic granularity of
block groups. While the majority of the literature has studied
a subset of the 5Ds only, we investigated the relationships
between all the 5D properties and commuting behavior in
four transportation modes, all in one unified model.

ML models are capable of detecting complexities embed-
ded in the data drawn from real-world events and deci-
sions, contrary to linear econometric models. Given the com-
plexities of the relationships between the built environment,
travel behavior, and socio-demographic characteristics, such
as non-linearities, a multi-output RF model was employed
to model the relationships. Following the fitting of the RF
model, feature importance was implemented to investigate
the relationships between built environment variables and
mode shares. The SHAP (SHapley Additive exPlanations)
method was used to assess these relationships. Contrary to
other feature importance methods that only provide informa-
tion on the ranking or the score of importance of each feature,
SHAP values give insights into both the magnitude and the
direction of relationships.

Our main results can be summarized as follows. First,
as hypothesized in this study, areas with more diverse land
use have higher shares of commuting by bus, rail, and walk-
ing. On the contrary, the negative sign of the land-use mix
variable for the driving mode indicates that areas with a
lower land-use mix have higher shares of driving to work.
Findings of this study are in line with previous studies where
researchers have demonstrated that mixed land uses increase
trips by active and public transportation, while decreasing
trips by automobiles [25], [28]. Land-use diversity encour-
ages non-motorized travel compared to motorized travel by
placing activity locations close to each other and reducing
travel distance and time [34], [71]. Second, similar to the
diversity dimension, the urban feature of population density
shows positive impacts on choices of bus, rail, and walking,
while more compact areas have a lower share of driving to
work. Thus, a higher population density increases travel by
active and public transportation, which aligns well with the
findings reported in the extant literature [27], [72], [73].

Third, as a proxy for the design dimension, the network
connectivity variable shows the impact in the same direction.
This study reiterates the findings from the extant literature
where researchers found that high transport network con-
nectivity due to smaller block size significantly increases
walking, cycling, and public transport and decreases car use
by proving a better connection between origin and destina-
tions [38], [41], [74], [75].
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As for the fourth dimension —destination accessibility,
we can see that areas with better job accessibility have higher
shares of bus, rail, and walking and lower shares of driving
commute to work, which complies with previous studies [34].
Finally, the last built environment variable —distance to tran-
sit, indicates that as we get closer to the light rail transit
corridor and their stations, people are more likely to take the
bus, rail, and to walk more, and also drive less. Also, areas
with a higher bus route density have larger shares of bus,
rail, and walking, and have smaller shares of driving to work.
Thus, expanding the supply of public transit throughout the
city syphons demand away from driving and towards public
transit and other modes used as a first mile/last mile solution.

Moreover, as the feature rankings indicate, rail transit prox-
imity and design (street intersection density) are the most
important built environment characteristics for rail mode
choice. Density and rail transit proximity are the most influ-
ential variables for the walk mode. Similarly, these two vari-
ables of density and rail transit proximity have large effects on
the driving mode choice. However, for the bus mode choice,
socioeconomic features such as median gross rent, renter-
occupied housing percentage, and the socio-demographic
component (white percentage, educational attainment, and
car ownership) used as a control in the RF model are more
influential than any of the built environment factors.

Our findings provide robust evidence to suggest urban
planners and urban designers to invest in more compact,
mixed-use developments in the proximity of transit stations to
encourage travel behaviors in line with sustainability objec-
tives. As shown in Figure 5d, among the 5 Ds factors, transit
proximity has the greatest impact on reducing driving. There-
fore, investing in a sustained fashion in public transit systems
to bring these modes closer to the urban populations of transit
riders (both in the form of bus services and rail stations) will
be effective at bringing people to drive less and take more
sustainable modes. Given the anticipated population [76] and
urbanization growth [77] and the greater needs for sustainable
transportation, policy makers and decision makers can take
into account this consideration and develop action plans to
this end. Urban planning and design strategies in line with the
other Ds will reinforce the effectiveness of such intervention
in the mid-to-long term.

With regard to the complexities of the topic treated here and
to the limitations of our work, we propose several considera-
tions for extending our work in the future. The availability of
disaggregated data including individuals’ travel preferences
and attitudes may help us investigate the heterogeneity of
relationships and the selection bias issue that often permeate
the urban transportation and land use nexus. Second, since
work travel and non-work travel are known to exhibit very
different patterns, it would be useful to also study non-work
travel, in addition to work travel. Moreover, considering
other modes of sustainable and active transportation such as
bicycling and micromobility services would be informative
to sustainable urban planning and design, provided that data
availability can be secured. Multimodal options should also
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be weaved through the design of the modal choice sets of
residents as they represent a meaningful share of trips in
larger and complex urban environments.
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