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Abstract: Recognizing an urgent need to understand the dynamics of the pandemic’s severity,
this longitudinal study is conducted to explore the evolution of complex relationships between
the COVID-19 pandemic, lockdown measures, and social distancing patterns in a diverse set of
86 countries. Collecting data from multiple sources, a structural equation modeling (SEM) technique
is applied to understand the interdependencies between independent variables, mediators, and
dependent variables. Results show that lockdown and confinement measures are very effective
to reduce human mobility at retail and recreation facilities, transit stations, and workplaces and
encourage people to stay home and thereby control COVID-19 transmission at critical times. The
study also found that national contexts rooted in socioeconomic and institutional factors influence
social distancing patterns and severity of the pandemic, particularly with regard to the vulnerability of
people, treatment costs, level of globalization, employment distribution, and degree of independence
in society. Additionally, this study portrayed a mutual relationship between the COVID-19 pandemic
and human mobility. A higher number of COVID-19 confirmed cases and deaths reduces human
mobility and the countries with reduced personal mobility have experienced a deepening of the
severity of the pandemic. However, the effect of mobility on pandemic severity is stronger than the
effect of pandemic situations on mobility. Overall, the study displays considerable temporal changes
in the relationships between independent variables, mediators, and dependent variables considering
pandemic situations and lockdown regimes, which provides a critical knowledge base for future
handling of pandemics. It has also accommodated some policy guidelines for the authority to control
the transmission of COVID-19.

Keywords: COVID-19 pandemic; lockdown measures; social distancing; human mobility; socioeconomic
and institutional factor; spatial-temporal effects; SEM

1. Introduction

Coronavirus disease 2019 (COVID-19) is a public health crisis that has afflicted more
than 225 countries all over the world [1,2]. This highly communicable disease is expected to
have lingering effects on public health, human mobility, and the environment, disrupting
social relations and economic wellbeing, and transforming the social and spatial structure
of the city [3–11]. Studies have shown that a reduction in mandatory and discretionary mo-
bility can essentially curtail the severity of the pandemic and associated health risks [12,13].
Throughout the pandemic, various non-pharmaceutical interventions (NPIs) (e.g., lock-
down and confinement, restriction on gathering and movement) have been implemented to
ease the human toll significantly by reducing people’s mobility and by encouraging social
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distancing practices [14,15]. The spread of the pandemic has also caused people to cut their
essential and non-essential movements.

Furthermore, the socioeconomic makeup and institutional structure of a country can
influence pandemic severity, human mobility, and the rigor of various lockdown measures.
Our previous research investigated the complex relationships between the COVID-19
pandemic, lockdown measures, and people’s social distancing and mobility behaviors [16].
However, this study was conducted at the inception of the pandemic and used mobility
data for one time frame only, namely 17 April 2020. Considering the unsettled nature
of these relationships over time, the current study intends to identify and analyze the
evolution of the complex interplay between the COVID-19 pandemic, lockdown measures,
and people’s social distancing and mobility behaviors over twelve months of the pandemic
across countries globally. Focusing on temporal changes not only updates our previous
work but also complements it.

In the preceding study [16], we empirically investigated the complex interplay be-
tween the COVID-19 pandemic, mobility changes in retail and recreation, transit stations,
workplaces, and residential areas, and lockdown measures across a broad range of socio-
spatial contexts (88 countries in total). To perform the study, data related to changes in
personal mobility, socioeconomic and demographic characteristics of populations, lock-
down and stay-in-place measures, and the prevalence of the COVID-19 pandemic itself
were extracted from various sources (e.g., Google, UNDP, UN, BBC, Oxford University, and
Worldometer). Using the framework of structural equation modeling (SEM), the direct and
indirect effects of independent variables on dependent variables considering the interven-
ing effects of mediators were explored. The early results showed that globally and at the
coarse granularity of nations, lockdown measures encouraged people to maintain social
distancing practices and reduced COVID-19-associated health risks. However, limited
effects of pandemic severity and socioeconomic and institutional factors were observed to
uphold social distancing practice. The study also reported that socioeconomic and institu-
tional arrangements and dispositions significantly influenced the severity of the pandemic.
For example, countries with a higher number of elderly, service sector employment, and
higher ambiance of globalization have been the critical victims of the pandemic (e.g., USA,
UK, Italy, and Spain). In contrast, social distancing measures are reasonably effective at
mitigating the health risks of the pandemic.

Considering that the early effort was limited by the cross-sectional nature of the
analysis, where each population sample was observed at a single point in time, the present
study situates the clinical, behavioral, social, and institutional aspects of the pandemic
in a broader temporal context and examines sampled countries repeatedly at different
periods to detect seamlessly any changes in the variables and parameters in different
phases of the pandemic. Moreover, the availability of time-series data would ensure the
dynamic properties and stability of our model, which is critically important to assess the
vigor of the pandemic and better empower the world for effective action under changing
socio-politico-medical contexts. Despite meaningful insights from the previous study after
a few months of the pandemic, a longitudinal study comprising of time series data is
necessary to capture the temporal aspects of the pandemic, how they evolve and influence
the mobility of the people, and how people adjust with the changing environment. This
spatial-temporal data analysis is critical to mitigating the pandemic efficiently by taking
data-driven decision-making [17].

Thus, this longitudinal study aims to investigate the evolution of complex relationships
between the incidences of the COVID-19 pandemic, lockdown measures on populations, and
their social distancing and mobility behaviors throughout the time of the pandemic from
March 2020 to February 2021 across 86 countries of the world. Thanks to the integrated analyt-
ical framework of SEM, the following four research questions are formulated to understand
the evolution of these intertwined relationships in different waves of the pandemic:

1. What are the impacts of various lockdown measures on reducing people’s mobility
patterns and the severity of the pandemic?
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2. What are the consequences of the pandemic severity on mobility patterns and, there-
fore, on the practice of social distancing of people?

3. What are the impacts of human mobility on the severity of the pandemic?
4. What are the effects of socioeconomic factors of domestic populations and institutional

arrangements and dispositions on population mobility and on the pandemic severity?

The rest of the paper is organized as follows. Section 2 reviews the relevant strands
of literature on factors of COVID-19 pandemic, lockdown and confinement measures, and
human mobility, particularly in their spatio-temporal context; it is on this basis that the
multidimensional conceptual framework of this study is articulated. In Section 3, we present
the sources of data for the study and our analytical methods. Results of a longitudinal
sequence of 24 calibrated SEM models are reported and analyzed in Section 4. The study
findings are summarized and discussed in Section 5. Conclusions are drawn in Section 6.

2. Literature Review

A number of studies have investigated the complex relationships between the COVID-
19 pandemic, lockdown measures, social distancing, and human mobility patterns. The
following sub-sections summarize and discuss the associations between the conditions
related to this pandemic after critically reviewing and analyzing previous studies.

2.1. COVID-19 Pandemic and Human Mobility Patterns

The COVID-19 pandemic has drastically changed mobility systems due to enacted
lockdown and confinement measures, social distancing practices, and personal hygiene
requirements, most strikingly with an increase in private travel modes (e.g., car, bicycle,
walking) and a decrease in public transport (e.g., bus, train) [6,18–22]. Surveying 5000 urban
residents in the United States, Europe, and China in April 2020, the Boston Consulting
Group (BCG) investigated people’s mode choice behaviors during lockdown regimes [23].
The results shown in Table 1 illustrate that the share of some private modes (i.e., bike,
scooter, walking) has increased in all three study regions due to minimal risk of COVID-
19 infection. In contrast, private cars, public transit, and shared mobility options have
declined, which mirrors the overall reduction in mobility in all three regions. Thus, this
ongoing public health crisis has negatively and profoundly affected the travel patterns of
urban residents.

Table 1. Changes in personal modal choices during lockdown regimes, adopted from [23].

Transport Mode United States Europe China

Public transit (metro, bus) −60% or above −60% or above −60% or above

Ride-hailing (on-demand, pooled) −60% or above −60% or above −60% or above

Ride-hailing (on-demand, single) −60% or above −60% or above −60% or above

Car sharing (free-floating
or station-based) −60% or above −60% or above −60% or above

Bike sharing (free-floating
or station-based) +21% to +59% −21% to −59% +21% to +59%

Scooter sharing −60% or above −60% or above N/A

Bike/e-scooter, walking +21% to +59% +21% to +59% +21% to +59%

Private car (own or company supported) −21% to −59% −60% or above −21% to −59%

Having compiled mobility data of mobile phone users by country/region/sub-region/city,
Apple Inc., Cupertino, CA, USA, has estimated changes in human mobility around the
world [24]. Compared to the baseline of 13 January 2020 (i.e., 100), they observed the mobility
changes (i.e., time spent by the people) in car use, walking, and transit use. Figure 1 shows
changes in car use, walking, and public transit use between 13 January 2020 and 11 March
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2021 in six heavily affected countries, namely the United States, United Kingdom, Italy, Aus-
tralia, Brazil, and India. It reveals the full extent of the mobility collapse between March and
May 2020, with a deeper downturn in April. However, car and walking trips exhibited an
ascending trend after May due to people’s essential travel and the low chance of infection
in comparison to other modes. While public transit trips also showed an increasing trend,
this remained at a level well below the baseline situation due to a higher risk of COVID-19
infection and a lower possibility to maintain social distancing.
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Many studies have investigated the impacts of COVID-19 on human mobility patterns
in more detail. For example, Bucsky [19] investigated the impacts of COVID-19 and
associated mobility restriction measures (e.g., national emergency, curfew, restrictions on
gathering, closure of schools and colleges, border closure for non-nationals) on travel mode
choice behaviors of people in Budapest, Hungary. With traffic volume data sourced from
Budapest Roads Ltd., route planner application Waze, the Budapest Centre for Transport
Ltd., and the local bike-sharing system, the study observed a disproportionate reduction
across several transport modes. Specifically, it found a higher drop in public transit use
(80%) compared to the reduction in cycling and bike sharing (23% and 2%, respectively).
However, when considering the overall modal split, cycling grew to 4% in March 2020
(4%) versus 2% in 2018, as it is viewed as a safer mode with a low possibility of infection.
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Private car share increased dramatically from 43% in 2018 to 65% in March 2020. In contrast,
public transport experienced a sharp drop during the pandemic (from 43 to 18%). Similarly,
Munawar, Khan [25] calculated an 80% reduction in public transit use in Australia; thus,
the transport system encountered an exceptional transformation in a short period, with a
positive trend for cycling and car use and a negative trend for transit use.

Similarly, observing travel patterns of 1439 people in Switzerland, researchers in [26]
estimated a 60 and 95% reduction in daily travel distance by car and public transport due
to restrictive measures associated with COVID-19. They also noticed a drastic increase in
cycling (i.e., a 75% increase during the lockdown period compared to 2019) due to the higher
use of bicycles for non-commuting purposes (e.g., recreation). However, car travel regained
slowly after the relaxation of travel restrictions. The use of public transportation was still 20%
below the pre-COVID level, which indicates that many people are still working from home
and either curtailed their travel altogether or their use of public transport modes as much as
possible to protect themselves from infection. Besides a reduction in overall travel demand,
researchers observed structural changes in human mobility patterns (e.g., reduction in long-
distance travel, more clustered and local movements, changes in shortest path movement)
in Germany, all of which had a considerable impact on flattening the curve [27]. Thus, the
COVID-19 pandemic has affected overall transportation systems by influencing travel distance,
mode choices, and changing structural attributes of travel.

Some studies also investigated how transport accessibility and human mobility may
have stimulated the spreading of the COVID-19 virus. For example, researchers in [28]
quantified the impacts of personal mobility on COVID-19 diffusion in Italy by developing
a multiple linear regression model. The results showed a direct positive correlation of daily
COVID-19 confirmed cases with trips made three weeks earlier, taking into consideration
the imposed quarantine mobility restrictions of 14 days along with the incubation period of
the disease; thus, human mobility is one of the critical factors that influence the diffusion of
the COVID-19 pandemic [29]. In the same geographical context, Cartenì, Di Francesco [8]
investigated the association between transport accessibility (i.e., rail-based accessibility) and
COVID-19 cases using a multiple linear regression model. The estimated results show that
transport accessibility has the highest contribution (i.e., 40%) to explaining the incidence
of COVID-19 cases, which indicates that better accessibility to a certain geographic area
enhances the possibility of virus diffusion. This study supported policies and strategies
that restrict transportation accessibility as an effective response measure to control the
COVID-19 pandemic.

Hadjidemetriou, Sasidharan [30] investigated the impacts of government interventions
and human mobility on COVID-19 deaths in the United Kingdom. Using the daily digital
footprint of walking, driving, and transit trips, this study found a gradual decrease in
human mobility in May 2020 (i.e., 60, 80, and 60% reduction in driving, transit riding, and
walking, respectively, below prior-year levels), which correlated well with the reduction
of COVID-19 related deaths. It pointed to the effectiveness of travel restrictions and
related non-pharmaceutical interventions (NPI), particularly while traveling on public
transportation, to reduce the risk of COVID-19 infection. Otherwise, the uncontrolled
movement of people would cause rapid transmission of the pandemic [31,32].

From the above discussion, it is conceived that COVID-19 and human mobility in-
fluence one another (Figure 2). A higher rate of virus infection reduces human mobility,
while higher mobility in the population can magnify viral transmission. Thus, these two
dimensions of the socio–clinical reality exhibit a bi-directional relationship.
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2.2. Lockdown and Confinement Measures and Human Mobility

While the fear of infection and of serious health complications has gripped the state of
mind of many segments of human societies, lockdown and confinement measures adopted
by governments during the COVID-19 pandemic may have tangibly influenced travel
patterns of people. A number of empirical studies have investigated and compared the
movement of people before, during, and after the lockdown regimes to understand the
impacts of NPIs on travel patterns [15,33–39].

Saha, Barman [40] investigated the impacts of lockdown measures for the COVID-19
pandemic on community mobility across India. This study used time-series trends plotting
and spatial inverse distance weighted (IDW) interpolation of Google locational data to
understand pre- and post-lockdown (15 February to 23 March 2020 versus 24 March to
30 April 2020) mobility changes in retail and recreation, grocery and pharmacy, parks,
transit stations, and workplaces. The results indicate that lockdown and confinement
measures reduced activity by 73.4, 51.2, 46.3, 66, and 56.7% in retail and recreation, grocery
and pharmacy, parks, transit stations, and workplaces, respectively. In contrast, activity
in residential areas increased by 23.8% since people stayed at home due to implemented
travel restrictions and workplace shutdowns. The study observed a drastic change in
mobility immediately just one day after (i.e., 25 March 2020) the lockdown adoption
(i.e., 70.51, 60.26, 46.17, 65.6, and 60.03% reduction in activity in retail and recreation,
grocery, pharmacy, parks, transit stations, workplaces, respectively, and 26.32% increase
in residential areas). The study supported lockdown measures as an effective means to
encourage social distancing among people to reduce COVID-19 diffusion.

Researchers in [41] investigated the impacts of lockdown measures on travel behaviors
in Thessaloniki, Greece, by comparing travel patterns before and during the pandemic.
Using ordinary least squares regression and Cox proportional hazards duration models, the
study reported a 50% reduction in daily trips/person due to adopted lockdown measures.
It also found an increase in walking and car use and a reduction in transit trips. A sharper
reduction is observed in non-commuting trips. However, overall trip duration increased
substantially because people mostly travel for recreational and shopping purposes, which
take much time. Similarly, some studies mentioned a 40 to 76% reduction in overall
mobility in different geographical contexts of the world [19,33,35,42–45]. Thus, lockdown
and confinement measures in various national contexts have a significant influence on
travel behaviors, including a reduction in traffic accidents (i.e., 74.3 and 76% reduction
in 14–20 February compared to 16 March–26 April 2020 and the equivalent period in
2018–2019, respectively) [46].

In Australia, Beck and Hensher [47] noticed a 50% increase in vehicle movements
associated with the relaxation of travel restrictions (on 8 May 2020) that followed the
initial spike in infection cases and ensuing lockdown, although vehicle movement was
still 66.67% below the pre-COVID situation. Conducting a travel survey from 23 May to
15 June, they observed an increase in shopping and recreational trips and in people’s desire
to socialize with friends and relatives. People are also more likely to work from home and
less likely to use public transport, thus, the study suggested that government should be



Int. J. Environ. Res. Public Health 2022, 19, 7317 7 of 31

watchful, monitor social events, and impose social distancing measures to control viral
transmission. In conclusion, the lockdown and confinement measures implemented by
state authorities overall significantly influenced people’s mobility during the COVID-19
pandemic (Figure 3).

Int. J. Environ. Res. Public Health 2022, 19, 7317 7 of 33 
 

 

initial spike in infection cases and ensuing lockdown, although vehicle movement was 
still 66.67% below the pre-COVID situation. Conducting a travel survey from 23 May to 
15 June, they observed an increase in shopping and recreational trips and in people’s de-
sire to socialize with friends and relatives. People are also more likely to work from home 
and less likely to use public transport, thus, the study suggested that government should 
be watchful, monitor social events, and impose social distancing measures to control viral 
transmission. In conclusion, the lockdown and confinement measures implemented by 
state authorities overall significantly influenced people’s mobility during the COVID-19 
pandemic (Figure 3). 

 
Figure 3. Interactions between lockdown measures and human mobility. 

2.3. Lockdown and Confinement Measures and COVID-19 Transmission 
As a whole, lockdown and confinement measures may play a critical role in curtail-

ing the transmission of viruses by reducing human mobility, contacts, interactions, and 
social gathering. Several studies have investigated the effectiveness of lockdown and con-
finement measures for travel restrictions on COVID-19 transmission in cities and regions. 
For example, applying a data-driven epidemic model, researchers in [48] investigated the 
impacts of control measures (e.g., lockdown, quarantine) on COVID-19 diffusion using 
real-world reported cases from 24 March to 30 May 2020 in India. The prediction accuracy 
of the model was validated using reported confirmed cases from 1 June to 10 June 2020 
with an R2 of 0.998. The model indicated that, after 6 weeks of the lockdown measures, 
confirmed cases had dropped threefold below the initial level, which sanctions the effec-
tiveness of control measures to mitigate the severity of the pandemic.  

In the same geographical context of India, Gupta, Mohanta [49] used an SEIR-QDPA 
model to evaluate the impacts of statewide lockdown measures on the epidemic and to 
estimate exit strategies under different lockdown scenarios. With data collected in March 
and April 2020, they estimated the disease reproduction number to be 2.08 early on, with 
a drop to 1.67 on 30 March and then to 1.16 on 22 April. The decreasing trend of the re-
production number indicates the effectiveness of control measures to slow down the dif-
fusion of COVID-19 across India. The study also found that the delay of lockdown relax-
ation after the first wave pushed back the start time of the second wave. In contrast, com-
plete removal of lockdown would have increased the number of active cases despite the 
date of relaxation. Thus, strict lockdown measures coupled with other control measures 
(e.g., testing) are necessary to mitigate the severity of the pandemic [38].  

Oum and Wang [50] determined optimal lockdowns and travel restrictions to control 
the pandemic in a hypothetical city or region using a traffic congestion economic model. 
The model indicates that when individuals engage in travel to social activities, they usu-
ally do not personalize external infection costs for other people. Consequently, this study 
suggested to impose travel restrictions or monetary penalties to personalize these costs to 
induce travel decisions and contain infectious diseases, in a fashion similar to introducing 
congestion pricing in the urban core to mitigate congestion. Thus, it is suggested that 
adopting strict measures and monetary penalties is essential to containing the pandemic 
in areas with a large population, population density, economic prosperity, and govern-
ment-subsidized medical facilities, and a greater probability of viral transmission. 

Lockdown and confinement measures tend to curtail human mobility immediately, 
however, they may do so differentially according to trip purposes. In addition, incubation 

Figure 3. Interactions between lockdown measures and human mobility.

2.3. Lockdown and Confinement Measures and COVID-19 Transmission

As a whole, lockdown and confinement measures may play a critical role in curtailing
the transmission of viruses by reducing human mobility, contacts, interactions, and social
gathering. Several studies have investigated the effectiveness of lockdown and confinement
measures for travel restrictions on COVID-19 transmission in cities and regions. For
example, applying a data-driven epidemic model, researchers in [48] investigated the
impacts of control measures (e.g., lockdown, quarantine) on COVID-19 diffusion using real-
world reported cases from 24 March to 30 May 2020 in India. The prediction accuracy of the
model was validated using reported confirmed cases from 1 June to 10 June 2020 with an
R2 of 0.998. The model indicated that, after 6 weeks of the lockdown measures, confirmed
cases had dropped threefold below the initial level, which sanctions the effectiveness of
control measures to mitigate the severity of the pandemic.

In the same geographical context of India, Gupta, Mohanta [49] used an SEIR-QDPA
model to evaluate the impacts of statewide lockdown measures on the epidemic and to
estimate exit strategies under different lockdown scenarios. With data collected in March
and April 2020, they estimated the disease reproduction number to be 2.08 early on, with
a drop to 1.67 on 30 March and then to 1.16 on 22 April. The decreasing trend of the
reproduction number indicates the effectiveness of control measures to slow down the
diffusion of COVID-19 across India. The study also found that the delay of lockdown
relaxation after the first wave pushed back the start time of the second wave. In contrast,
complete removal of lockdown would have increased the number of active cases despite
the date of relaxation. Thus, strict lockdown measures coupled with other control measures
(e.g., testing) are necessary to mitigate the severity of the pandemic [38].

Oum and Wang [50] determined optimal lockdowns and travel restrictions to control
the pandemic in a hypothetical city or region using a traffic congestion economic model.
The model indicates that when individuals engage in travel to social activities, they usually
do not personalize external infection costs for other people. Consequently, this study
suggested to impose travel restrictions or monetary penalties to personalize these costs to
induce travel decisions and contain infectious diseases, in a fashion similar to introducing
congestion pricing in the urban core to mitigate congestion. Thus, it is suggested that
adopting strict measures and monetary penalties is essential to containing the pandemic in
areas with a large population, population density, economic prosperity, and government-
subsidized medical facilities, and a greater probability of viral transmission.

Lockdown and confinement measures tend to curtail human mobility immediately,
however, they may do so differentially according to trip purposes. In addition, incuba-
tion would delay the damping of infection cases and deaths by one or two weeks [51],
hence, the scope and timing of effects on health outcomes remain to be fully established.
Li, Campbell [52] conducted a study in 131 countries to understand the temporal associa-
tion between lockdown interventions (e.g., closure of schools and workplaces, restrictions
on public gathering and movement) and COVID-19 transmission. Calculating the ratio of
reproduction number (R) (i.e., the ratio of daily R and R from the previous day of imple-
menting any lockdown measures) and applying a log-linear regression model, the study



Int. J. Environ. Res. Public Health 2022, 19, 7317 8 of 31

observed changes in R. The study found a reduction in R (3 to 24%) on the 28th day after
any interventions compared to the last day before interventions. The study also observed
an increase in R (11 to 25%) on the 28th day after the relaxation of the interventions. Thus,
lockdown interventions significantly influence virus transmission, which could provide ev-
idence to policymakers on when to introduce and relax a lockdown intervention. Similarly,
by collecting data from 49 countries, researchers in [53] demonstrated that uninterrupted
lockdown policies between certain dates are very effective in suppressing the COVID-19
pandemic. Thus, timely, strict, and uninterrupted lockdown measures can reduce the
severity of the pandemic even in the deadly affected areas considering the lag time of
around 1 to 2 weeks, as portrayed in Figure 4 [15,30,46,54,55].
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2.4. Socioeconomic, Spatial, and Climatic Factors and COVID-19 Transmission

The socioeconomic status of people, living environments, and community structures
are very important factors in viral diffusion. Much research has been conducted on the
socioeconomic factors of COVID-19 transmission. These studies also investigated the
temporal and spatial dependence in the associations of these factors with COVID-19
transmission. For example, Andersen, Harden [56] studied the socioeconomic and spatial
determinants of the COVID-19 pandemic in the US. Collecting data from multiple sources
(e.g., USAFacts, American Community Survey, Centers for Disease Control and Prevention
[CDC]), the study applied a three-stage regression analysis to determine the factors that
collectively influence COVID-19 cases and deaths. The results revealed that community
vulnerability to the pandemic is associated with urban environments, a larger black, elderly
and disabled population, and people working in production and transportation sectors
with a low salary and with no sick leave benefits. Similarly, researchers in [57,58] found a
higher infection and mortality rate in major cities with a higher number of elderly and a
larger black population, and in less developed areas with a higher number of people with
low socioeconomic background and without access to health care.

Maiti, Zhang [59] explored the local and global associations of socioeconomic variables
with COVID-19 cases and deaths using spatial regression and machine learning models.
The model results indicate that ethnicity, crime rate, income, and migration have a strong
correlation with the COVID-19 pandemic across US counties. The dynamic local regression
model shows spatial heterogeneity in the association of socioeconomic variables with the
COVID-19 pandemic. Similarly, estimated parameters in both local and global models
exhibit high variability over space and time. Thus, it is effective to unravel the relationship
between socioeconomic variables and COVID-19 cases and deaths by applying various
models to draw more insights to control the pandemic. However, personal preventive
attitudes (e.g., wearing a facemask, coughing etiquette, hand washing and sanitizing,
etc.) and community preventive measures (e.g., avoiding unnecessary travel, large social
gatherings, shopping, travel in crowded public transportation, and travel outside of the
local area) are effective to control the severity of the pandemic [60,61].

Some studies also investigated the impacts of urban form (e.g., population density) on
COVID-19 transmission. For example, Cartenì, Di Francesco [8] found that a large popula-
tion and higher population density have a positive association with COVID-19 incidence.
The argument here is as follows: these factors increase the possibility of infection due to
increased social activity and gathering and a lower tendency to maintain social distanc-
ing. Similarly, researchers in [28,62] found that population density is positively associated
with viral transmission. In contrast, researchers in [58,63] observed a negative association
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between density and COVID-19 incidence (i.e., areas with higher population density expe-
rience fewer COVID-19 confirmed cases and deaths). They argued that although higher
density could encourage social interactions among residents, density also could lead to
superior healthcare facilities (e.g., more hospitals and healthcare workers), which increase
the capacity to control the pandemic. These studies advocated for compact development
and walkable communities to improve public health and reduce the vulnerability of the
large urban areas during any pandemic.

Some studies have also evaluated COVID-19 incidence in different environmental and
climatic conditions. For example, researchers in [64] quantified the impacts of meteorologi-
cal factors (e.g., daily average temperature, relative humidity) on daily COVID-19 cases in
30 Chinese provinces. Using a generalized additive model (GAM), the study found that
every 1 ◦C increase in average temperature with 67 to 85% relative humidity is associated
with a 36 to 57% reduction in COVID-19 cases. Moreover, they noticed that every 1% in-
crease in relative humidity reduced daily cases by 11 to 22% when the average temperatures
range from 5.0 ◦C to 8.2 ◦C. However, they found spatial heterogeneity in how temperature
and humidity are associated with COVID-19 incidence in Chinese provinces. Similarly,
researchers in [8] found that warmer weather and the presence of a long coastline where a
30% higher temperature is observed contribute to reducing coronavirus infection. Thus,
ambient temperature is inversely associated with the COVID-19 pandemic (i.e., higher
temperatures reduce the number of COVID-19 cases and deaths) [28].

However, adjusting for city-level socioeconomic and disease control factors (i.e., lockdown),
researchers in [65] found only a weak association between climatic variables (i.e., surface radia-
tion, humidity) and COVID-19 transmission rate in 359 large cities around the world using an
ordinary least squares regression. They estimated that climatic variables have less explanatory
power than socioeconomic and disease control factors. Similarly, by collecting meteorological
and COVID-19 incidence data from 202 locations in 8 countries and using wavelet coherence
analysis, Pan, Yao [66] showed that temperature, relative humidity, wind speed, and ultraviolet
(UV) radiation do not have a statistically significant association with the COVID-19 transmission
rate. Moreover, validating the results using the susceptible-exposed-infectious-recovered (SEIR)
model, the study also confirmed that meteorological conditions have limited impacts on COVID-
19 transmission. The above discussion indicates that the socioeconomic and living environments
of people have significant effects on the COVID-19 pandemic in contrast to weather conditions
of that area (Figure 5).
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2.5. Socioeconomic and Spatial Factors and Human Mobility

Just as the COVID-19 pandemic is conditioned by socioeconomic and spatial factors,
so may human mobility, including aspects of travel mode choice, travel distance, and travel
time. Some studies also investigated the variations in the mobility of people from diverse
sociodemographic backgrounds and geographical contexts. For example, Molloy, Schatz-
mann [26] observed a higher reduction in the daily travel of highly educated individuals
(i.e., college or technical education) compared to less educated ones. This discrepancy
became evident during and post lockdown scenarios, when individuals working in the ser-
vice industry returned to work, while professionals were often not expected to do so. This
study also mentioned variable daily travel across different household sizes. Single-person
households experienced a lower reduction in daily travel compared to larger households
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due to the lesser fear of infecting other household members and greater responsibility
for non-discretionary travel. Similarly, researchers in [41] found that low-income people
traveled more than high-income people and the travel duration of males was higher than
females. Moreover, urban residents were more likely to stay home, were unwilling to travel
to the city center and other crowded places, and reduced contact with other people [62,67].

Collecting travel flow data from 1436 administrative areas of mainland France, re-
searchers in [45] noticed that lockdown reduced short and long-range mobility across
the country by 65%. However, an uneven reduction in mobility was observed across
people of various socioeconomic backgrounds, geographical locations, and times of the
day. A sharper decrease in mobility was reported for the elderly, long-range travel, people
employed in the sectors that introduced work-from-home strategies during lockdown
periods, and areas with a higher number of hospitalizations and health issues. This study
also reported a higher reduction in mobility in major cities due to a higher number of
coronavirus cases and stricter lockdown measures. Movements during rush hours were
severely affected due to school closure and work-from-home policies. Movements during
the daytime on weekends have also been reduced due to a reduction in recreational trips. In
contrast, the smallest reduction in movement during nighttime was observed on weekdays
due to some mandatory work-related travel. Thus, evidence indicates that socioeconomic
and spatial factors and time of day may have a determining impact on human mobility
patterns (Figure 6).

Int. J. Environ. Res. Public Health 2022, 19, 7317 10 of 33 
 

 

 
Figure 5. Associations between socioeconomic, spatial, and climatic factors, and the COVID-19 pan-
demic. 

2.5. Socioeconomic and Spatial Factors and Human Mobility 
Just as the COVID-19 pandemic is conditioned by socioeconomic and spatial factors, 

so may human mobility, including aspects of travel mode choice, travel distance, and 
travel time. Some studies also investigated the variations in the mobility of people from 
diverse sociodemographic backgrounds and geographical contexts. For example, Molloy, 
Schatzmann [26] observed a higher reduction in the daily travel of highly educated indi-
viduals (i.e., college or technical education) compared to less educated ones. This discrep-
ancy became evident during and post lockdown scenarios, when individuals working in 
the service industry returned to work, while professionals were often not expected to do 
so. This study also mentioned variable daily travel across different household sizes. Sin-
gle-person households experienced a lower reduction in daily travel compared to larger 
households due to the lesser fear of infecting other household members and greater re-
sponsibility for non-discretionary travel. Similarly, researchers in [41] found that low-in-
come people traveled more than high-income people and the travel duration of males was 
higher than females. Moreover, urban residents were more likely to stay home, were un-
willing to travel to the city center and other crowded places, and reduced contact with 
other people [62,67]. 

Collecting travel flow data from 1436 administrative areas of mainland France, re-
searchers in [45] noticed that lockdown reduced short and long-range mobility across the 
country by 65%. However, an uneven reduction in mobility was observed across people 
of various socioeconomic backgrounds, geographical locations, and times of the day. A 
sharper decrease in mobility was reported for the elderly, long-range travel, people em-
ployed in the sectors that introduced work-from-home strategies during lockdown peri-
ods, and areas with a higher number of hospitalizations and health issues. This study also 
reported a higher reduction in mobility in major cities due to a higher number of corona-
virus cases and stricter lockdown measures. Movements during rush hours were severely 
affected due to school closure and work-from-home policies. Movements during the day-
time on weekends have also been reduced due to a reduction in recreational trips. In con-
trast, the smallest reduction in movement during nighttime was observed on weekdays 
due to some mandatory work-related travel. Thus, evidence indicates that socioeconomic 
and spatial factors and time of day may have a determining impact on human mobility 
patterns (Figure 6). 

 

Figure 6. Associations between socioeconomic features, spatial factors, and human mobility. 

2.6. Conceptual Framework 
Based on the comprehensive review of the extant literature summarized above, a 

conceptual framework is developed to study the relationships between lockdown 

Figure 6. Associations between socioeconomic features, spatial factors, and human mobility.

2.6. Conceptual Framework

Based on the comprehensive review of the extant literature summarized above, a
conceptual framework is developed to study the relationships between lockdown mea-
sures, mobility patterns, pandemic severity, and socioeconomic and institutional factors
of countries across all world regions (Figure 7). The conceptual framework posits that
spatial attributes, socioeconomic factors, institutional contexts, and lockdown and confine-
ments measures are influential considerations in the COVID-19 pandemic and on human
mobility. These factors control the severity of the pandemic by increasing or decreasing
COVID-19 confirmed cases and deaths. Similarly, they condition human mobility by in-
fluencing travel modes and purposes to essential and non-essential places. COVID-19
pandemic and human mobility co-exist through a bi-directional relationship, as they have
the potential to influence one another. The framework also postulates that travel modes
interact among themselves, which indicates that increasing one mode (e.g., car) automati-
cally reduces demand for other travel modes (e.g., bus). It is used to explicitly model the
complex and multifaceted relationships between the COVID-19 pandemic, lockdown and
confinement measures, human mobility, socioeconomic, and institutional factors at the
granularity of countries drawn from around the globe using structural equation modeling
(SEM) techniques.
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3. Data and Study Approach
3.1. Data

To test and validate the conceptual model internationally at the scale of countries and
determine the relative strength of the complex relationships between the factors outlined
in Figure 7, data were collected from multiple sources. The data sources include Google,
the United Nations (UN), United Nations Development Program (UNDP), Worldometer,
Oxford University, Hofstede Insights, The Fraser Institute, KOF Swiss Economic Institute,
and BBC. Table 2 contains the list of 19 variables that were included in the final model.
However, a complete list of variables that were tested in the SEM framework to achieve
the final model was provided in [16]. A complete and consistent dataset was compiled for
86 countries listed in Appendix A. Initially, a total of 131 countries were selected to collect
mobility data from Google, considering several important limitations (e.g., the internet
is not available in many countries, especially in rural areas, many people usually elderly
people do not use smartphones, users must turn on their travel location history). However,
a subset of 86 countries was extracted from the list of 131 countries due to inadequate
information on socioeconomic attributes, institutional contexts, lockdown measures, and
the incidence of the COVID-19 pandemic in the rest of the countries. The analysis reported
below is based on this reduced set of countries spanning all major world regions.
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Table 2. Description of the variables and data sources.

Variable Description Source

RR Percentage change of mobility in retail and recreation trips [68]
TS Percentage change of mobility in transit stations trips [68]
WP Percentage change of mobility in workplaces trips [68]
RD Percentage change of mobility in residential trips [68]

l_case Total coronavirus infection cases per 1 million population (log transform) [1]
l_death Total coronavirus deaths per 1 million population (log transform) [1]

NL National lockdown [69]
WPC Workplace closing [70]
SH Stay-at-home order [70]
SI Stringency index i [70]
FS Percentage of female smokers [70]

AGE65 Percentage of the population aged 65 and older [70]
MA Median age [71]
EI Average of years of schooling vs. expected years of schooling [71]
AE Percentage of the population employed in agriculture [72]
SE Percentage of the population employed in services [72]
HE Percentage of health expenditure to total GDP [72]
IDV Individualism versus Collectivism emphasis ii [73]

KOFGI KOF Globalization Index iii [74]
i A composite index considering all implemented lockdown measures. The score of this index ranges from 0 to
100. A high score indicates the strictest measures and low score indicates loose measure. ii This indicator measures
the degree of interdependence among the members of a society. The score ranges from 0 to 100. A low score
indicates collective culture and higher interdependence among the members and conversely a high score indicates
Individualist culture and a low level of interdependence. iii A composite index that indicates openness to trade
and capital flows considering economic, social and political aspects. The score of the index ranges from 0 to 100.
A high score denotes a highly globalized country and a low score indicates poorly globalized country.

Data related to changes in human mobility due to lockdown measures (e.g., travel ban,
work-from-home, shelter-in-place, restrictions on public gathering) were collected from
Google Mobility Reports [68,75]. This report shows how visits and length of stay at different
places, such as retail and recreation (e.g., restaurants, cafés, shopping centers, theme parks),
workplaces (i.e., place of work), transit stations (e.g., subway stations, seaports, taxi stands,
rest areas), residential areas (i.e., places of residence), parks (e.g., public parks, national
forests), grocery stores and pharmacies (e.g., supermarkets, convenience stores, drug stores)
changed during the pandemic compared to a baseline value, with a potential to reduce
the health outcomes of the COVID-19 pandemic. The baseline value is the median value
of the corresponding week during the 5-week period from 3 January to 6 February 2020.
This study uses mobility changes in retail and recreation, workplaces, transit stations,
and residential areas using the country as units of analysis. Due to the ambiguity in the
nature of visits and trips to grocery stores and pharmacies and the inconsistent definition
of parks across countries (i.e., only include public parks), mobility changes for these POIs
are excluded from the study.

The total daily number of coronavirus infection cases and death cases for the study
period were sourced from Our World in Data, a research project at the University of
Oxford [70]. They collect data from thousands of sources around the world, analyze
and validate them in real-time, and provide country-wise COVID-19 statistics. A 7-day
moving average (i.e., adding up the number of cases/deaths for the prior 7 days and
dividing the total number by 7) for coronavirus cases and deaths was calculated to take
any uninformed cases and deaths on a particular day into account. To flatten the curve of
COVID-19, governments issued different lockdown measures for part or a whole country
to restrict all non-essential movements. Data related to lockdown measures were collected
from Dunford, Dale [69], and Oxford [70]. This study also collected socioeconomic (e.g.,
age, education, employment sector) and institutional context (e.g., individualism versus
collectivism, globalization index) data to investigate their impacts on coronavirus infection
cases and deaths, lockdown measures, and travel patterns.
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3.2. Study Approach

SEM is used to investigate the causal relationships between socioeconomic and in-
stitutional factors, lockdown variables, coronavirus infection and death rates, and social
distancing measures and validate the model depicted in Figure 7. This multivariate sta-
tistical technique is a common method for investigating complex relationships between
dependent variables, independent variables, mediators, and latent dimensions. Many
researchers have used SEM to investigate the factors that affect travel behaviors (e.g., mode
choice, trip purpose, travel distance), for instance [76–79]. SEM consists of regression
analysis, factor analysis, and path analysis to explore interrelationships among variables.
It is a confirmatory technique where a postulated model is tested to check consistency
between the existing theories and the nature of constructs.

Based on exploratory factor analysis (EFA) and extant theories reviewed in the previ-
ous section of this article, latent dimensions are created to reduce dimensions and easily
understand the data and represent underlying concepts. The following four latent dimen-
sions are constructed:

1. Human mobility (i.e., the reverse of Social Distancing): TS, RR, WP, and RD
2. Pandemic severity: l_case and l_death
3. Lockdown measures: NL, WPC, SH, and SI
4. Socioeconomics and institutional factors: MA, AGE65, KOFGI, AE, SE, HE, FS, EI,

and IDV.

Moreover, a path diagram is constructed to graphically represent the interdepen-
dencies of the independent variables, mediators, and dependent variables in the model
specification. Finally, a set of fit indices (e.g., Chi-square, CFI, TLI, RMSEA, SRMR) are
estimated to establish the goodness-of-fit of the model. Two models evenly spaced on the
timeline are estimated from each month from March 2020 to February 2021, to capture the
temporal aspects of the pandemic, how they evolved and influenced the mobility of people,
and how people learned and adjusted to the changing environment (Table 3). Hence, a
total of 24 models are estimated. For the sake of comparison over time, the same functional
specification of the model is estimated for each instance.

Table 3. Models estimated in this study.

S.N. Models Dates

1 1 and 2 17 March and 31 March 2020

2 3 and 4 17 April and 30 April 2020

3 5 and 6 17 May and 31 May 2020

4 7 and 8 17 June and 30 June 2020

5 9 and 10 17 July and 31 July 2020

6 11 and 12 17 August and 31 August 2020

7 13 and 14 17 September and 30 September 2020

8 15 and 16 17 October and 31 October 2020

9 17 and 18 17 November and 30 November 2020

10 19 and 20 17 December and 31 December 2020

11 21 and 22 17 January and 31 January 2021

12 23 and 24 17 February and 28 February 2021

4. Study Results

The models were calibrated using the SEM Builder on the STATA 15 platform [80].
The maximum likelihood estimation method was used to calculate the coefficients. The
final structure of the models included interactions between dependent and independent
variables through mediators (Figure 8). This figure was used as the basis to estimate
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the direct and indirect impacts of independent variables on dependent variables and the
changes in parameters over time.
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The robustness of the calibrated models was assessed with several goodness-of-fit
statistics, as presented in Appendix B. The Chi-square (CMIN) statistics of the estimated
models ranged from 200 to 400, which were statistically significant. A lower value of CMIN
indicates a better fit for the models [16]. The chi-square over the number of degrees of
freedom (Chisq/df) with a value of 5 or less is a good measure of model fit [81].

The Chisq/df values of all models presented in Appendix B showed a good fit of the
models. Similarly, the values of CFI, TLI, and SRMR indicate a good fit of the models with
an acceptable range of the values [81,82]. The estimated goodness-of-fit indices demonstrate
that the calibrated models matched the actual data as closely as possible. Thus, by all means,
the performance of the models was quite satisfactory, which validated the usefulness of the
analysis and of the models that were generated.

4.1. Impacts of Lockdown and Confinement Measures
4.1.1. Impacts on Human Mobility

The direct, indirect, and total effects of lockdown and confinement measures on human
mobility (i.e., the reverse of social distancing) from 17 March 2020 to 28 February 2021
are depicted in Figure 9. Direct impacts of lockdown measures (Figure 9a) show that,
at the onset of the pandemic (March to mid-May), governments that adopted lockdown
and confinement measures significantly enhanced the practice of social distancing and
reduced human mobility in their jurisdiction (i.e., a negative association between lockdown
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measures and mobility). People appear to have fairly strictly abided by the social distancing
measures induced by the fear of COVID-19 infection, which resulted in sharply reduced
mobility of people. However, human mobility increased from mid-May to mid-October
(i.e., positive association) compared to the baseline value (i.e., the 5 weeks from 3 January to
6 February 2020) in response to somewhat relaxed lockdown measures and people’s fatigue
with government decrees and their yearning for a return to normal life. Consequently, a
sudden rise in COVID-19 cases and related deaths in most countries were observed, with
a peak from November 2020 to mid-January 2021. Considering the renewed vigor of the
pandemic during this time frame and reinstated NPIs, human mobility further reduced
significantly in most countries.
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In addition to their direct effect on social distancing patterns, lockdown measures can
also have an indirect impact (Figure 8) on human mobility patterns through the feedback
intermediation of the viral spread itself. Figure 9b indicates that this overall indirect
impact was, in fact, very limited and rather insignificant throughout the study period, even
offsetting to some extent the direct effects starting in June 2020. Thus, a decreasing trend
(i.e., negative association) was observed from mid-June to mid-October due to relaxed
lockdown measures and the manageable state of the pandemic. The reverse happened
from mid-October to February 2021 due to the severity of the pandemic and people’s
self-quarantine to protect themselves and family members from the COVID-19-related
health risks.

The impacts of lockdown and confinement measures on each of the factors of human
mobility patterns (i.e., human activity at retail and recreation sites, transit stations, work-
places, and residential areas) can be estimated by the same token (Figure 9d). Overall, they
closely track the total impacts of lockdown. Human activity in residential areas was higher
compared to the baseline scenario from March to mid-May and mixed with fluctuations
from mid-October to February. In contrast, between mid-May and mid-October, people
sought to escape stay-at-home directives. Understandably, compared to residential areas,
human activity in retail and recreation, transit stations, and workplaces exhibited the
reverse response to lockdown measures. They dropped from March to mid-May and from
mid-October to February (with fluctuations during the year’s end holiday season) and
increased from mid-May to mid-October. The nature of impacts of lockdown measures on
social distancing and human mobility at various POIs explains that with the increasing
strictness of lockdown measures and the severity of the pandemic, people maintained social
distancing practices and thereby stayed at home; they strived to avoid essential travel to
retail and recreation, transit stations, and workplaces. In contrast, people responded to the
relaxation of lockdown measures by overcompensating with travel to retail and recreation
facilities, transit stations, and workplaces.

Considering the direct and indirect effects discussed so far, Figure 9c depicts the
total impacts of lockdown and confinement measures on human mobility patterns. These
impacts overwhelmingly reflect direct effects. Specifically, the figure indicates notably
diminished human mobility between March and mid-May as a result of lockdown measures,
and the same also transpires for the period from mid-October to February, although the
effect is weaker and even opposite in late December, possibly as a result of lower behavioral
compliance during the end of the year holiday season. In contrast, a significant increase
in human mobility was observed from mid-May to mid-October as the first wave of
infection eased in many countries. Overall, the figure explains that people practiced social
distancing when the government imposed strict lockdown measures, which therefore
reduced mandatory and non-mandatory trips. On the other hand, the tendency to maintain
social distancing reduces when authorities ease lockdown measures, and people want a
break from monotonous daily living. Thus, temporal changes in social distancing patterns
are observed with adjustments to the strictness of lockdown measures and the severity of
the pandemic at different time points (e.g., March to mid-May, mid-May to mid-October,
and mid-October to February) throughout the study period.

4.1.2. Impacts on COVID-19 Pandemic

The impacts of COVID-19-related lockdown and confinement measures on overall
pandemic severity, COVID-19 confirmed cases, and deaths, are presented in Figure 10.
The 24 models calibrated over the study period found no direct impact of lockdown
measures on the COVID-19 pandemic. However, an indirect impact is portrayed, with
the mediating effect of social distancing/human mobility patterns. Specifically, evidence
shows that the pandemic reached greater severity (i.e., positive association), including
COVID-19 confirmed cases and deaths, in countries that had enacted lockdowns from
March to May and mid-October to February. The pandemic was also found to have eased
out (i.e., negative association) in locked-down countries compared to others from June to
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mid-October. What may explain these contrasted responses is that, during the latter months,
lockdown measures received greater compliance from populations, particularly those in
countries that were afflicted by a higher incidence of the pandemic, which resulted in more
social distancing and a sharp reduction in human mobility at various POIs. During the early
months of the pandemic, social distancing was rather unevenly practiced as people were
still learning about the pandemic and ways to effectively mitigate it, messaging from public
health officials was often lacking consistency, and people also willfully ignored government
directives. After October, as the pandemic somewhat eased out, remaining lockdown
measures were increasingly seen as oppressive of people’s freedoms and disregarded by
populations eager to return to more normal daily lives. Thus, it can be concluded that
lockdown measures influenced the severity of the pandemic by moderating factors of social
distancing practices, but human factors of learning, uncertainty, fatigue, and contempt and
defiance towards government downgraded their effectiveness.
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4.2. Impact of Pandemic Severity on Human Mobility

The direct, indirect, and total effects of the pandemic on human mobility over the study
period are captured in Figure 11. There is a negative direct association between pandemic
severity and social distancing from March to mid-June, which means that countries where
the pandemic was raging experienced reduced human mobility at retail and recreation
facilities, transit stations, and workplaces and increased time spent at residences. However,
the association was statistically not very significant nor strong. The rest of the pandemic is
in sharp contrast, with the pandemic leading directly to lower social distancing and more
mobility from mid-June to February, although fluctuations in the magnitude of the response
are well discernable. It can be conjectured that, after months of strict lockdown measures
and associated social and economic disruptions, and the trepidations of the early phase
of the pandemic, people and business organizations were desperate to go back to normal
life and resume usual pre-pandemic activities. Consequently, whether or not authorities
relaxed the strictness of different lockdown measures, higher human mobility at different
POIs ensued, regardless of the increasing pandemic severity.

The indirect impact (Figure 11b) of the pandemic on human mobility is marked by self-
moderation. The figure presents a relatively weak negative indirect association between
pandemic severity and mobility, which indicates that during the peak time of the pandemic,
people self-regulated their travel demands and stayed at home due to the fear of COVID-19
infection regardless of relaxed lockdown measures.

Drilling down deeper into human engagement in various activities, Figure 11d shows
the indirect impacts of pandemic severity on human mobility at retail and recreation
facilities, transit stations, workplaces, and residential areas. Specifically, pandemic severity
negatively influenced human activity at retail and recreation facilities, transit stations, and
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workplaces while leading to more time spent home from March to mid-June. The reverse is
observed from mid-June to February. Thus, during the early phase of the pandemic, people
reduced their movement to different POIs due to lockdown measures and self-awareness
induced by fear of infection; however, at the later stage, people started to travel for different
purposes, considering the social and economic loss, prolonged nature of the pandemic, and
relaxed lockdown measures.
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Figure 11. Direct (a), indirect (b,d), and total (c) effects of pandemic severity on human mobility.

Combining direct and indirect impacts, Figure 11c reveals the total impacts of the
pandemic on mobility. We find a trend of associations that largely mirrors the direct effects
discussed above (i.e., negative association from March to June and positive association
from June to February). Thus, overall, the human toll of the pandemic situation fails to
motivate people to curb their mobility when the crisis survives for a long time. Human
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behaviors are complex and cannot readily be brought to a single dimension. Whereas
the model controls for a number of other factors and influences, it is clear the contextual
complexity of individual and social responses with social distancing continues to defy
simple understandings, particularly given the heterogeneous contexts of countries [9,22,83].

4.3. Impacts of Human Mobility on the Severity of the Pandemic

Figure 12 depicts the direct, indirect, and total effects of human mobility (and, therefore,
social distancing practices) on pandemic severity over the study period. The SEM analysis
isolated a strong negative direct impact (Figure 12a) of social distancing on pandemic
severity throughout the study period compared to the baseline scenario. This effect was
greatest in late December 2020 and early January 2021, in fact, in the order of 3 to 4 times
larger than in the early weeks of the pandemic (between March and May 2020). Thus,
the analysis shows that countries that have reduced their personal mobility more have
experienced a deepening of the severity of the pandemic (i.e., more infection cases and
more deaths). This, of course, may strike as counterintuitive. However, it is worth restating
here that this effect is observed while controlling for the role of lockdown measures enacted
in a number of countries, or for that matter, the lack thereof. In our model, the effect of
lockdown measures is captured separately, as discussed in Section 4.1.2.
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The indirect impact (Figure 12b) of human mobility on pandemic severity happens by
self-moderation. It was found to be much smaller than its direct counterpart, and hovered
around zero from March to mid-June. In contrast, a wavering positive impact is observed
from mid-June to February, with a relatively significant impact from December due to the
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self-regulated effect. During this time, people reduced social distancing and increased
essential and non-essential trips due to relaxed lockdown measures and a somewhat open
economy, which substantially increased the severity of the pandemic.

Combining direct and indirect impacts, the overall trend (Figure 12c) shows the
preponderance of the direct effects on the severity of the pandemic. Specifically, in and
of itself, the reduction of personal mobility in countries, in fact, led to a deepening of the
pandemic, in spite of the self-moderating effect noted earlier, assuming away all other
factors, especially the enactment of lockdown measures by various levels of governmental
authorities. Therefore, we find that home confinement enhances the risk of infection from
other members of the household, if other NPIs are not adequately implemented and the
stringency of enforcement aimed at curtailing community infection is not accounted for.

4.4. Impacts of Socioeconomic and Institutional Factors
4.4.1. Impacts on Human Mobility

The direct, indirect, and total effects of socioeconomic and institutional factors on
social distancing (i.e., human mobility) are presented in Figure 13. Overall, socioeconomic
and institutional factors have negative direct associations with mobility throughout the
study period, with a positive association for a short time only (i.e., from mid-May to
mid-June). These effects were also found to be deepening as the pandemic went on.
Thus, socioeconomic and institutional factors provide a context that encourages people
to maintain social distancing (i.e., reduction in necessary and unnecessary travel to POIs)
considering the greater vulnerability of the elderly, higher treatment costs, higher level of
globalization, increasing employment in the service sector, and decreasing employment in
the agricultural sector, degree of independence in society.

The indirect effects (Figure 13b) of socioeconomic and institutional factors on mobility
are moderated by the pandemic severity and lockdown measures (Figure 8). Except
for the month of March 2020, these effects are positive. Through complex mediations,
socioeconomic and institutional conditions indirectly encourage people to be more mobile
by enabling the pandemic to reach higher levels of acuity and enabling stricter lockdown
measures, considering the greater risk of infection due to fragile public health conditions,
higher risk of infection from globalization, and open interactions.

The total impact of socioeconomic and institutional factors on social distancing mea-
sures (Figure 13c) shows an increase in human mobility from mid-May to mid-October
to February and a negative effect before and after that period. Thus, we find that socioe-
conomic and institutional factors may encourage people to maintain social distancing or
lead to greater personal mobility at different stages of the pandemic. In particular, we see
that social distancing was the norm internationally earlier on, then went away for several
months before being espoused quite assiduously in the Fall and Winter of 2020 and 2021.

4.4.2. Impacts on Pandemic Severity

The direct, indirect, and total effects of socioeconomic and institutional factors on pan-
demic severity are shown in Figure 14. The direct impacts (Figure 14a) were generally positive,
despite showing a negative association at the end of the study period (i.e., mid-December to
February). Thus, socioeconomic and institutional factors increased the severity of the pan-
demic due to a higher number of elderly people who were physically susceptible to COVID-19
infection, a higher level of globalization, higher employment in the service sector and lower
employment in agriculture, and to a higher degree of personal independence in society.
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Figure 14. Direct (a), indirect (b), and total (c) effects of socioeconomic and institutional factors on
pandemic severity.

Indirect effects (Figure 14b) of socioeconomic and institutional factors on the severity
of the pandemic are moderated by lockdown measures and social distancing patterns. SEM
results show a negative and relative insignificant negative indirect impact of socioeconomic
and institutional circumstances from March to mid-October 2020 due to implemented lock-
down measures and people’s tendency to maintain social distancing. However, a positive
and strong association is observed from mid-October to February due to a slight relaxation
of lockdown measures, people’s intention to go back to normal life, and increasing human
mobility to different POIs.

The overall impacts (Figure 14c) of socioeconomic and institutional factors on pan-
demic severity involve a positive association of socioeconomic and institutional factors
and pandemic severity all through the study period. Thus, socioeconomic and institutional
factors increase COVID-19 confirmed cases and deaths via a larger elderly population,
higher health costs, deeper involvement in globalization, more employment in the service
sector, and less employment in agriculture.
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5. Discussion

Considering the direct and indirect effects and their temporal variation, this study
reported a negative association between lockdown measures and human mobility at the
onfall of the pandemic from March 2020 to mid-May 2020. People maintained strong
social distancing (i.e., lower tendency to travel for essential and non-essential purposes)
when the government imposed strict lockdown measures and restrictions on mobility.
On the other hand, citizens defied social distancing practices when authorities eased
lockdown measures between mid-May and mid-October 2020, and they aspired to go
back to normal life and break the dullness of their confined life. However, a further
reduction in human mobility was observed from November 2020 to mid-January 2021
due to the reinstatement of lockdown measures induced by the sharp rise in coronavirus
cases and deaths. Thus, strict lockdown measures significantly reduced human mobility
across countries, which upholds the findings from our previous study [16], where we
showed that strict lockdown measures substantially decreases human mobility at retail and
recreation facilities, transit station, and workplaces and encourage people to stay home
and avoid unnecessary travel. Similarly, researchers in [84] reported a significant drop in
human mobility after introducing lockdown in Chinese cities. Conducting a study in 15
European cities, Santamaria, Sermi [85] observed a reduction in human mobility during the
lockdown periods and an increase in human mobility after effectively lifting the lockdown
and confinement measures. Moreover, they mentioned that lockdown and confinement
measures could explain up to 90% of the variability in mobility patterns. Thus, lockdown
and confinement measures are very effective in reducing human mobility for controlling
the diffusion of a viral infection such as COVID-19.

We have also shown that lockdown and confinement measures indirectly influence
the COVID-19 pandemic by moderating social distancing/human mobility patterns. The
study findings indicate that the pandemic severity intensified in some countries from
March to May due to the inadequate practice of social distancing and from mid-October to
February due to the increase in human mobility induced by relaxed lockdown measures
and people’s eagerness to return to normal life. However, the study noticed that adequate
and timely adopted lockdown measures reduced the severity of the pandemic from June
to mid-October, which corroborates the findings from previous studies [16,86–88]. Study
findings in [89] reported that restrictions on human mobility and person-to-person con-
tact reduce COVID-19 transmission by 45%. However, delayed lockdown measures and
people’s unwillingness to maintain social distancing, and their return to traveling to retail
and recreation facilities, transit stations, and workplaces can increase the severity of the
pandemic. Thus, researchers in [86] suggested evaluating mobility changes after the imple-
mentation of lockdown measures along with appropriate messaging and announcement
(i.e., safe preparation, the burden on the supply chain) and resource allocation to prevent
any unintended consequences.

Socioeconomic and institutional conditions encourage people to practice social dis-
tancing (i.e., mobility reduction), considering the greater vulnerability of the elderly, higher
treatment costs, higher level of globalization, increasing employment in the service sector,
decreasing employment in agriculture, and the degree of independence in national societies.
These factors also motivate people to maintain social distancing while the pandemic is more
severe and lockdown measures are more strict, considering the greater risk of COVID-19
infection due to fragile public health conditions, higher risk of infection from globaliza-
tion, and open interactions. Thus, socioeconomic and institutional factors have significant
impacts on maintaining social distancing to reduce the severity of the pandemic [16,90,91].

This study also found a significant impact of socioeconomic and institutional factors
on the severity of the pandemic. Considering direct and indirect impacts, we observed that
socioeconomic and institutional factors increased the severity of the pandemic due to a
higher number of elderly people who are physically susceptible to COVID-19, a higher level
of globalization, increasing employment in the service sector, a reduction in agriculture,
and a higher degree of independence in society. Thus, socioeconomic and institutional
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factors increase the severity of a pandemic by reducing social distancing practices and
increasing human mobility for essential and non-essential purposes [16,90–92].

The study found mixed effects of the COVID-19 pandemic (i.e., negative and positive)
on maintaining social distancing. The negative association at the early stage of the pandemic
(March to June) indicates that the increasing severity of the pandemic reduced human mobility
and increased time spent at their residence. Early on, people reduced their movement due
to lockdown measures and self-awareness induced by fear of infection, which endorses the
findings from previous studies [16,26,93,94]. However, the association was not statistically
very significant and robust. In contrast, a positive association from mid-June to February
indicates that human mobility increases despite the increasing severity of the pandemic.
This can be ascribed to people and business organizations becoming desperate to go back to
normal life and resume usual daily activities after prolonged and strict lockdown measures and
associated social and economic disruptions. Consequently, authorities relaxed the stringency of
lockdown measures, which induced higher human mobility regardless of increasing pandemic
severity. However, overall, pandemic situations have little influence on reducing human
mobility when the crisis is sustained for a long time.

Investigating the impact of human mobility on pandemic severity, we observed a
strong negative and sustained impact of mobility/social distancing on pandemic severity
throughout the study period compared to the baseline scenario, with the greatest impacts
in late December 2020 and early January 2021. The study showed that countries with
a sharper reduction in personal mobility had experienced an increased severity of the
pandemic due to the absence of other NPIs and the possibility of infection from other
family members while home confinement. Thus, maintaining social distance lessens the
severity of the pandemic (i.e., the number of infection cases and deaths) by reducing human
trips to retail and recreations, transit stations, and workplaces and encouraging people to
stay at home, which confirms the results from previous studies [16,95,96]. However, people
reduced social distancing and increased essential and non-essential trips due to relaxed
lockdown measures and the desire to open the economy, which substantially increased
human mobility and the severity of the pandemic. Conducting a study in European
countries, researchers in [97] mentioned that human mobility is solely responsible for up
to 92% of the early diffusion of COVID-19, although a declining trend is reported after
implementing lockdown measures and restrictions on mobility. Thus, appropriate timing
and practicing social distancing is one of the key factors in controlling the outbreak of the
pandemic [98].

6. Conclusions and Directions for Future Research

Given the adverse effects of the COVID-19 pandemic, there is a pressing need to
understand the root causes of the pandemic, associated risks, and conditions that exacer-
bate its impacts and promising mitigation measures. This study intended to perform a
longitudinal study spanning a great diversity of countries, with data from March 2020 to
February 2021. The main objective of this longitudinal study was to explore the evolution
of complex relationships between the incidence of the COVID-19 pandemic, lockdown
measures on populations, and their social distancing and mobility behaviors in 86 countries.
A conceptual framework was developed (Figure 7) to hypothesize the spatial attributes,
socioeconomic factors, institutional contexts, and lockdown and confinements measures
that would influence the COVID-19 pandemic and human mobility. To test and validate the
conceptual model, an SEM framework was applied to calibrate 24 models on data collected
from multiple sources (Table 2) to test and validate the conceptual model.

The study results indicate that implementation of lockdown and confinement measures
are necessary to reduce human mobility and encourage people to stay home to control
COVID-19 transmission through community infection. However, delayed implementation
of lockdown measures, relaxation of lockdown measures, and people’s failure to maintain
social distancing and their travel for work and discretionary activities can worsen the
pandemic. Thus, it is suggested to evaluate mobility changes after the implementation
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of lockdown measures, which can guide policymakers on when to implement stricter
lockdown measures or ease them, to curtail the diffusion of coronavirus. The study also
found that national context defined by socioeconomic and institutional factors influences
social distancing patterns and the severity of the pandemic. Additionally, this study
observed an intertwined two-way association between the COVID-19 pandemic and human
mobility. Higher severity of the pandemic reduces human mobility and on the other hand,
higher human mobility increases the severity of the pandemic. However, the impact
of human mobility on pandemic severity is stronger and more significant compared to
the reverse relationship. Overall, the study displays considerable temporal changes in
the relationships between independent variables, mediators, and dependent variables
considering pandemic situations and lockdown regimes.

Several policy decisions have been outlined based on the analysis. The timely im-
plementation of strict and comprehensive lockdown and confinement measures is critical
to mitigating the severity of the pandemic by reducing the movement of people and
person-to-person interactions. Moreover, estimating the changes in human mobility during
lockdown periods is an effective policy option to evaluate the social distancing patterns
of people. If necessary, a targeted campaign among the less responsive communities or
individuals could be effective in enhancing social distancing practice, in addition to vaccine
administration at a large scale [99,100]. Since mass transportation is risky during pandemic
situations, micro-mobility (e.g., e-scooter, cycling) could be promoted to facilitate safer
travel of people [9].

Although this study has revealed the changing faces of the pandemic and provides
significant policy implications, adopting an SEM using actual longitudinal data (i.e., panel
data) and showing temporal effects in path diagrams could reveal complex causal relation-
ships between COVID-19 pandemic, lockdown measures, and human mobility [101]. Since
mobility changes in transit stops do not necessarily represent the condition of transporta-
tion systems and infrastructure for public transportation, future studies should consider
the effects of public transport infrastructure, social distancing regulations inside the public
transportation system, and the governance of public transportation on human mobility
and COVID-19 pandemic. Moreover, the application of machine learning-based models
may offer additional insights to control this multifaceted problem.

The goodness-of-fit statistics of the models (Appendix B) showed a deviation from
the suggested cut-off values, which may raise concerns about the statistical significance
of our results. However, it is a standard practice held by applied researchers as long
as an adequate scientific explanation is provided and the results are grounded in and
consistent with the extant literature and theories, even if there is a small deviation from the
suggested cut-off values. Here are the main points that guide us in making decisions on
the fit and significance of our results, given that the number of independent countries in
not subject to sampling. First, a simulation study [102] found that the values of fit indices
are very sensitive to sample size, factor loadings, and to the number of indicators. The
study suggested adjusting the fit indices for the effects of sample size and factor loadings
before comparing them with arbitrary cut-off values. Second, fit indices are one of the
many methods to assess the goodness-of-fit of the model. Thus, researchers have strongly
suggested consulting extant theories to assess the fit of the models rather than solely relying
on the fit indices derived from empirical methods [103]. Third, triggered by the uncertainty
and contextual value of fit indices to meet the recommended cut-off points, researchers
characterize the validity of model findings based on their scientific understanding [104].
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Appendix A

Table A1. The list of 86 countries used in the analysis.

SN Country SN Country

1 Angola 44 Libya

2 Argentina 45 Lithuania

3 Australia 46 Luxembourg

4 Austria 47 Malaysia

5 Bangladesh 48 Malta

6 Belgium 49 Mexico

7 Brazil 50 Mozambique

8 Bulgaria 51 Namibia

9 Burkina Faso 52 Nepal

10 Canada 53 Netherlands

11 Cape Verde 54 New Zealand

12 Chile 55 Nigeria

13 Costa Rica 56 Norway

14 Croatia 57 Pakistan

15 Czech Republic 58 Panama

16 Denmark 59 Peru

17 Dominican Republic 60 Philippines

18 Ecuador 61 Poland

19 Egypt 62 Portugal

20 El Salvador 63 Qatar

21 Estonia 64 Romania

22 Fiji 65 Saudi Arabia

23 Finland 66 Senegal

24 France 67 Singapore

25 Germany 68 Slovakia

26 Ghana 69 Slovenia

27 Greece 70 South Africa

28 Guatemala 71 South Korea

29 Honduras 72 Spain

30 Hungary 73 Sri Lanka
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Table A1. Cont.

SN Country SN Country

31 India 74 Sweden

32 Indonesia 75 Switzerland

33 Iraq 76 Tanzania

34 Ireland 77 Thailand

35 Israel 78 Trinidad and Tobago

36 Italy 79 Turkey

37 Jamaica 80 United Arab Emirates

38 Japan 81 United Kingdom

39 Jordan 82 United States

40 Kenya 83 Uruguay

41 Kuwait 84 Venezuela

42 Latvia 85 Vietnam

43 Lebanon 86 Zambia

Appendix B

Table A2. Goodness-of-fit statistics of the models.

Model # Chi-Square Chisq/df RMSEA CFI TLI SRMR

1 201.120 1.559 0.081 0.958 0.945 0.076

2 289.406 2.243 0.120 0.915 0.887 0.118

3 261.331 2.026 0.108 0.920 0.894 0.099

4 322.505 2.500 0.132 0.893 0.859 0.127

5 391.566 3.035 0.154 0.857 0.810 0.153

6 372.752 2.890 0.148 0.865 0.821 0.177

7 353.937 2.743 0.142 0.872 0.831 0.150

8 317.053 2.458 0.130 0.892 0.857 0.110

9 280.169 2.172 0.117 0.911 0.882 0.131

10 281.313 2.181 0.117 0.907 0.876 0.127

11 280.169 2.172 0.117 0.911 0.882 0.131

12 302.100 2.342 0.125 0.894 0.860 0.123

13 307.364 2.383 0.127 0.892 0.857 0.119

14 280.600 2.175 0.117 0.905 0.874 0.107

15 253.788 1.967 0.106 0.917 0.890 0.117

16 303.425 2.352 0.125 0.884 0.847 0.113

17 261.692 2.029 0.109 0.917 0.890 0.098

18 281.006 2.178 0.117 0.904 0.873 0.095

19 278.128 2.156 0.116 0.903 0.872 0.096

20 280.201 2.172 0.117 0.910 0.881 0.087

21 258.293 2.002 0.108 0.922 0.897 0.090

22 328.738 2.548 0.134 0.881 0.843 0.095

23 258.864 2.007 0.108 0.918 0.891 0.093

24 247.352 1.917 0.103 0.925 0.900 0.093

RMSEA (root mean squared error of approximation), CFI (comparative fit index), TLI Tucker–Lewis index), SRMR
(standardized root mean squared residual).
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